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RANS Turbulence Models and Large Eddy Simulation

Welcome to the third lecture in module 9 on numerical simulation of turbulent flows.

(Refer Slide Time: 00:31)

So  we  have  already  discussed  the  features  of  turbulent  flows  and  numerical  simulation

procedures and we discussed RANS turbulence models in the last lecture and today’s lecture

we will  discuss  further  on  RANS turbulence  models  and would  also  discuss  large  eddy

simulation of turbulent flows.
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So let us have a brief recapitulation of lecture 2. We discussed Reynolds averaging procedure

and  thereby  we  derived  Reynolds  averaged  Navier-Stokes  equations,  which  contained

Reynolds stress terms, which were supposed to be modeled and for that what we need RANS

turbulence  models.  We had discussed a brief  outline  of Boussinesq proposition and eddy

viscosity models.

Today we will have brief look at or rather slightly more detail look at some of the turbulence

models used in Reynolds averaged Navier-Stokes simulations.

(Refer Slide Time: 01:29)

So focus for today’s lecture is RANS turbulence models and then in the second half of the

lecture we would consider large eddy simulation. So the outline today’s lecture, first we will

have a look at RANS turbulence models and then we will look at large eddy simulation,

which is called LES in short. We will discuss the conceptual procedure involved in large eddy

simulation.

Then we would briefly discuss the spatial filtering operation of Navier-Stokes equations for

incompressible flow and then we would have a look at 1 or 2 popular subgrid scale models

for large eddy simulation.
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Now in RANS turbulence models, we discussed 2 varieties, one we called eddy viscosity

models  for  instance  a  mixing  length  model,  Spalart-Allmaras  model,  standard  k-epsilon

model, k-epsilon RNG model, realizable k-epsilon model and so on and we also discussed

briefly noted briefly the Reynolds stress models. Now in this list with mixing length model is

what we call zero equation model.

Spalart-Allmaras model is 1 equation model and standard k-epsilon model is a 2 equation

model. Standard k-epsilon, k-epsilon RNG, realizable k-epsilon model or k-omega model,

these are all 2 equation models. So we will discuss only one representative model today that

is standard k-epsilon model and Reynolds stress model, which directly works on the transport

equations of Reynolds equations to obtain the Reynolds stresses directly by solving a set of 6

PDEs.

So the bold ones that is to say mixing length model, Spalart-Allmaras model, standard k-

epsilon model and Reynolds stress models for the ones which we are going to have a bit more

detail look today.

(Refer Slide Time: 03:25)



So let us have a look at the mixing length model, which is one of the oldest one which was

proposed by Prandtl  and the basic premise was based on the realization that look less 2-

dimensional analysis and through dimensional analysis we can say that look our kinematic

turbulence viscosity, which has got units of meter square per second can be expressed as a

product of a velocity scale from where we get meter by second.

And length of scale which will give us m*m/s that gives us m square s and we can multiply it

by a constant. So nu tau which our kinematic turbulence viscosity can be expressed in terms

of a dimensionless constant and a velocity scale and a length scale. Now this length scale

would  be  typical  of  our  eddy’s  structure.  Now  we  can  assume  that  velocity  scale  is

proportional to the length scale and gradients in the velocity field.

This is not consistent with our earlier discussions on turbulent flows that is to say the eddy’s

which are there of a particular length their velocity scales are dependent on the gradients of

flow velocity. So it is based on this particular observation, which we had a look earlier that

we can express the velocity length scale theta in terms of the length scale and the velocity

gradient.

Let us say here we are dealing with the pair of flows we can say del u/del y where u is the

flow velocity in x direction and y is the length scale or the coordinate perpendicular to that.

Now we can combine these 2 equations and thereby we get what is referred to as Prandtl’s

mixing length model.
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The name of Prandtl is associated because he was the one who derived it first so nu tau=lm

square del u/del y. We have combined the length of scale l and the constants in this lm and for

different flows all that we need to know to use this particular model to get an expression or

rather a formula, which can give us the value of the mixing length lm, del u/del y that would

be obtained from a flow solution itself.

So that is why we do not have to solve a separate equation to compute our eddy viscosity

here. Now algebraic equations exist for the mixing length for simple 2-dimensional flows

such  as  pipe  and  channel  flows.  For  more  details,  please  see  the  book of  Versteeg  and

Malalasekara.
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Now let us have brief look at the advantages of this model. It is very easy to implement and

requires very little computational time in addition to solving our velocity components and it

gives pretty good prediction for thin shear layers and disadvantages are it is completely in

capable of describing flows with separation or circulation and it calculates only mean flow

properties and turbulence shear stresses.

So this mixing length model is used only for the simulation of this shear layers okay. Next

category is Spalart-Allmaras model. We will not have a look at the algebraic details because

this is very specialized model for aerodynamic calculations.

(Refer Slide Time: 06:35)

And it is a 1 equation model because it is solved for single conservation equation or 1 PDE

for  the  turbulent  viscosity  and  this  conservation  equation,  which  has  been  derived  for

aerodynamic  flows.  It  contains  a  convective  and  diffusive  transport  term  as  well  as

expression for production and distribution of the turbulent kinematic viscosity.
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Now this was used primarily or this was developed primarily for using unstructured codes in

aerospace  industry  and  it  is  economical  and  accurate  for  certain  type  of  attached  wall-

bounded flows and flows with mild separation and recirculation. Please remember the way

we described earlier also that it is primarily used in aerodynamic simulation so we are not

going to have any detailed look at the equations involved.

If you are interested you can pick up any book references Versteeg and Malalasekara’s book

or any other CFD book can give you details of this model.

(Refer Slide Time: 07:30)

Next, we come to the most widely used model in fact it is k-epsilon model. It is a 2 equation

model, which is the workhorse for industrial CFD analysis. This is one of the most popular

models and the so called standard model that the original k-epsilon model it was proposed by



Launder and Brian Spalding in 1974. It makes use of 2 model equations, 1 for turbulent

kinetic energy k and one for the rate of dissipation of turbulent kinetic energy per unit mass

epsilon.

So  this  reason  we  call  it  as  k-epsilon  model.  So  we  can  solve  for  these  k  and  epsilon

everywhere in the flow field. So we can use this k and epsilon to obtain velocity and length

scales. For instance, the velocity scale could be easily obtained by taking the square root of k.

Remember k is turbulent kinetic energy per unit mass. So that is basically has got the units of

velocities or dimensions of velocity square.

So this square root will give us a velocity scale and length scale is defined in terms of the

turbulent kinetic energy that is k to the power 3/2/epsilon so length scale is the one which

relates  both  the  kinetic  energy  of  turbulence  to  the  dissipation  of  the  turbulence  kinetic

energy and we can use these 2, l and theta in our eddy viscosity model to estimate the new tau

that turbulent kinematic viscosity as C mu theta*l.

Where C mu is a dimensionless constant. Now this turbulent kinetic energy equation can be

derived from our Navier-Stokes equations and invoking Reynolds averaging procedure, but

the derivation of equation for epsilon that is bit more complicated, it involves very empirical

constants here.

(Refer Slide Time: 09:33)

So we will  just list  the 2 standard equations and the way they are used. The first one is

equation for the kinetic  energy k or what we call  transport  equation for turbulent  kinetic



energy k. So del/del t of rho k+del/del xj of rho k vj bar=del/del xj of mu T/sigma k del k/del

xj+twice of mu T S ij S ij-rho times epsilon. So here epsilon is our dissipation term, this S ij

that is velocity rate tensor and strain rate tensor, which can be obtained from the average

velocities that is vj bar.

And this mu T is our dynamic eddy viscosity, sigma k is a constant. Similarly next transport

equation for epsilon, del/del t of rho epsiolon+del/del xj of rho epsilon vj bar=del/del xj of

mu T times sigma epsilon del epsilon/del xj+C1 epsilon epsilon/k 2 mu T S ij S ij-twice of C2

epsilon rho epsilon square/k. So these 2 are coupled partial differential equations. In fact, they

also involve the 8 unknown velocity components.

So these two equations for k and epsilon, these two PDEs must be solved together with our 3

momentum equations that is 3 equations for velocity components and we had many empirical

constants here sigma k and sigma epsilon, C1 epsilon, C2 epsilon and C mu. So these are

adjustable constants, which have been determined or rather they have been estimated based

on the curve fitting from a wide collection of experimental data on turbulent flows.

And most widely used values, which have been suggested based on these compilations are

that C mu is taken as 0.09, sigma k is taken as 1, sigma epsilon is taken as 1.3, C1 epsilon is

1.44 and C2 epsilon is taken as 1.92. Now these are adjustable constants so depending on the

flow situations or flow type you might choose a better value if such an indication is available

in literature.

Otherwise will just go by these most widely used values in our code for the solution of k and

epsilon and once we know k and epsilon, mu T can be evaluated using the previous formula,

which we have seen earlier. Now what are advantages of the k epsilon model? It is relatively

simple to implement. We have got 2 additional equations, which have got similar form to that

of our normal momentum equations.

For  instance,  we  had  a  time  derivative  term,  a  convective  term,  a  diffusion  term  and

something like a source term. So solution process would be exactly  the same as the one

which we are going to use to integrate our momentum equations.
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We have to just add up 2 additional equations and it has been observed that k-epsilon model

leads to stable calculations that converge relatively easily, satisfied excellent performance has

been observed for many industrially relevant flows and that is one of the reason why this is

one  of  the  most  widely  validated  and  well  established  models,  which  I  would  say  is  a

workhorse for industrial CFD analysis.

(Refer Slide Time: 13:20)

There are some disadvantages though which are linked basically to the way we had assumed

a scalar eddy viscosity. So it provides poor prediction swirling and rotating flows wherein we

cannot have a scalar kinematic  viscosity assumption that is enforced very well.  Similarly

flows with the strong separation, axisymmetric jets and certain unconfined flows and fully

developed flows in non-circular ducts.



Further this model valid only for fully turbulent flows. If you got the low Reynolds number

flows, we have got to use special versions of k-epsilon model for low Reynolds number flows

(())  (14:01)  for  the  flows  which  might  be  just  turning  into  the  laminar  flows  that  is

transitional flows and a mix of turbulent flows for that we have to use low re versions of k-

epsilon model.

For details, please have a look at the book by Versteeg and Malalasekara on computational

fluid dynamics.

(Refer Slide Time: 14:22)

And there are many improved 2 equations models like k-epsilon, RNG model, realizable k-

epsilon  model,  k-omega  model  and  algebraic  stress  models  and  there  are  few nonlinear

models as well. We will not discuss in this lecture today. Further details please have a look at

the book by Versteeg and Malalasekara.  Next let  us have a brief look at  Reynolds stress

model, which is not based on eddy viscosity assumption and why do we need it?
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There are some reasons here that this eddy viscosity model they have significant deficiencies,

which  are  consequences  of  assumption  of  scalar  eddy  viscosity  and  experimental

measurements and direct numerical simulations indicate that in 3 turbulent flows specifically

over the complex geometries, eddy viscosity is not a simple scalar quantity in fact it has got

directional preferences so it becomes a tensor quantity.

Hence,  the  use  of  scalar  eddy  viscosity  for  computing  Reynolds  stress  is  not  really

appropriate and that is the reason why k-epsilon model does not work very well for such

situations. So we should instead now try to compute Reynolds stress directly using their own

dynamic or transport  equations.  So this  particular  observation is  what forms the basis  of

Reynolds stress model that is to say let us derive the transport equation for Reynolds stresses

and then try to solve them.

But it is not as simple as it appears to be. First is one of the most expensive of turbulence

models  and  nevertheless  though  we  can  derive  transport  equation  for  Reynolds  stresses

starting from Navier-Stokes equations and Reynolds averaging procedure, we will quickly

realize there are more terms in which new terms appear, which need to be modeled.
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So now let us define the kinematic Reynolds stress tensor capital R as R ij=-tau ij R/sigma

that is it is simply equal to vi prime vj prime overbar. So this is the average of flux product of

fluctuating components vi prime and vj prime. Now transport equation for R can be derived

from Navier-Stokes equations and we can write it in following form. The first term is the time

varying term, the second one is sort of a convective term for a transport of Reynolds stresses.

And the right hand side we have got few additional terms there details we will have a look at

in the next slide. So let us go how the equations reads like del of del t of rho R ij+del of del x

k of rho vk R ij=P ij+D ij-epsilon ij+pi ij+E ij.

(Refer Slide Time: 17:19)

Now here P is production term, D is called diffusion term, epsilon dissipation rate tensor,

capital pi is pressure-strain term and E represents turbulent diffusion. So P ij is given by –(rho



R ik del vj/del xk+rho R jk del vi/del xk. So if you look carefully this involves only our

Reynolds  stress  terms  and  Reynolds  average  velocity  components  so  this  can  be  easily

calculated.

The next our diffusion term D ij is again del/del xk of mu del R ij/del xk this is the second

relevant term, which does not involve any further unknowns but let us have a look at pi ij.

This is an average of the fluctuations of pressure and the fluctuating strain rate that is p

prime, del vi prime/del xj+del vj prime/del xi time average of all of this. This is something

which we do not know. So this has to be modeled.

Similarly, for epsilon ij which is dissipation rate tensor is 2 mu del vi prime/del xk*del vj

prime/del  xk  overbar  that  is  also  got  to  be  computed.  This  also  involves  unknown

correlations. The same words for E ij which is del/del xk of rho vi prime vj prime vk prime

overbar, which is what we call a third order moment+p prime vi prime delta ijk overbar+p

prime vj prime overbar delta ik.

So now we have introduced additional unknowns through these terms and these ones like

capital P ij, epsilon ij and E ij they must be modeled okay.
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So that is what is summary here that these ones the dissipation rate tensor, pressure-strain

term  and  turbulent  diffusion  term they  cannot  be  computed  exactly  and  hence  must  be

modeled.  There  were  many  different  models,  which  have  been  proposed  by  different

researches, which are available in literature. So for further details on modeling of these terms



please  see the first  initial  paper  of Launder  et  al  in 1975 and the book by Versteeg and

Malalasekara, which gives you further references regarding many different proposed models

for modeling these 3 terms.

(Refer Slide Time: 19:50)

So that is why we would put a full stop to our discussions on Reynolds stress models with

just one observation that in comparison to eddy diffusivity model, Reynolds stress models

require  fairly  large  computational  cost  that  is  very  obvious  because  we need  to  solve  7

additional PDEs, 6 for Reynolds stresses and 1 for dissipation term in contrast 2 required in

k-epsilon model.

So it is pretty expensive and thus one of reasons why these models have not been as popular

in industrial CFD analysis. Next let us move on to our large eddy simulation, which is not

picking up in industrial CFD analysis. So what is the basis? Let us have a look at what we

have learnt earlier and discussions on turbulent flows.
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And what we have observed that large scales motion, which we call large eddies, they are

much more energetic than small scale eddies and what is the consequence? It is the larger

eddies which is our most effective transporters of the conserved quantities that is they are the

ones who transport mass, momentum and energy. They are largely anisotropic and these are

the ones which we need to resolve accurately in our flow simulations.

(Refer Slide Time: 21:02)

In contrast to large scale eddies that what we call large eddies, the smaller eddies are much

weaker  and  they  have  got  very  limited  role  to  play  in  the  transport  processes  of  mass,

momentum  or  energy.  Furthermore,  we  have  seen  that  small  scale  motions  they  show

universal behavior. They are more or less isotropic irrespective of the turbulent flow with the

turbulent flows takes place in one type of geometry or another type of geometry.



So their behavior is what we call universal irrespective the context Reynolds number or the

geometry of the flow. So what we can do is we can instead come up with a model for this

smaller eddies. It is lot easier to capture the effect of this small scale eddies through a model

and try to resolve the large eddies accurately. So that forms what we call the basis or basic

philosophy of LES.

(Refer Slide Time: 22:01)

That is to say treat the large eddies of the flow exactly and model more universal small scale

eddies through what we would call is subgrid scale model and please remember this large

eddy simulations  that  they are inherently time dependent  in 3-dimensional  simulations  in

contrast to statistically averaged or time averaged Reynolds averaged equations where we get

steady state flows simulations.

Large eddy simulations are time dependents ones and as a consequence large eddy simulation

they are more costly than RANS simulations, but they are much less costly than DNS because

in DNS we require to resolve all the scales small scales as well as large scales, our grid size

and time steps were dictated by the smallest eddies that is the ones which have a size of

Kolmogorov length scale, but in LES we are not going to resolve up to that scale we will

rather stop in the middle.

We will just resolve the large eddies, so we can have much larger grid size in large eddy

simulation and consequently a large eddy simulation would be much less costly than DNS by

maybe  few  orders  of  magnitude  and  at  the  same  time  since  it  is  a  time  dependent  3-



dimensional  simulation it  could be a lot  more expensive than Reynolds averaged Navier-

Stokes simulation for the same flow.
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Nevertheless, LES is preferred method for obtaining accurate time history for high Reynolds

number and complex geometry flows for which DNS is not feasible owing to astronomical

computing requirements and RANS simulations are not very accurate. We have already seen

the k-epsilon model is not very good for the complex geometries flow, which will involve lots

of (()) (23:44) and flow separations and so on.

Since such situations large eddy simulation is the one which can help us out. So let us have a

brief look at the conceptual steps in large eddy simulation.
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The  main  concept  involved  is  that  we have  to  somehow separate  the  larger  scales  with

smaller ones and we would compute only the large scales of motions. So for this purpose we

have to employ a spatial filtering operation to separate the larger and smaller eddies. In case

we are working in spectral  domain then we have to come up with the spectral  filter  and

thereby separate eddies of high wave number and small wave number.

And once we have separated the filtered or resolved scale field is the one which is simulated

that  is  one  which  we would  compute  numerically  using  a  suitable  Navier-Stokes  solver,

which already discussed earlier.
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So now let us summarize the steps involved in large eddy simulation. The first step is choose

an appropriate filter to decompose velocity field into sum of a resolved component that is our

large eddy component and a subgrid scale are what we call in short SGS component. So this

SGS component is what refers to small scale eddies and once we have chosen the filter, we

would use that filter to obtain filtered Navier-Stokes equations.

Now these equations would be very similar  to the original time dependent Navier-Stokes

equation except for an additional residual term, which will call a subgrid stress term arising

from filtering. The word stress here is used to just maintain a new formatting with historical

perception  of  the  fluctuations  length,  which  we  have  seen  earlier  in  Reynolds  averaged

Navier-Stokes simulations.



So just keeping that terminology we have used here subgrid stress term and once we have

obtained the filter Navier-Stokes equations, the next step would be that this equation will not

be close because there would be some additional term that is residual or subgrid system. Now

this stress term has to be modeled so that it is expressed in terms of unknown quantities in

terms of our resolved velocity field.

So we have to come up with or use a model, which we call subgrid scale model and once that

is ready thereafter we can use our numerical  simulation procedure,  which we have learnt

earlier for Navier-Stokes equations to obtain the filtered velocity, pressure and temperature

field  using  an  appropriate  Navier-Stokes  solver.  Now  remember  here  it  is  just  more

comments in order that large eddy simulation again we would like to have an accurate time

history.

So very often  in  practice  what  do  we do is  we choose  an  explicit  Navier-Stokes  solver

because our time step is given by the accuracy requirements that would usually be pretty

small to satisfy the stability requirements imposed by an explicit time integration schemes

and since the integration scheme is explicit, time step which is small enough to satisfy the

stability requirements.

We can calculate very efficiently our velocity components using this explicit time integration

scheme.
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Now let us have a look at the filtering operation in Navier-Stokes equation. For the time

being, let us have a look at spatial filtering. The spectral filtering works in analogous fashion

okay.  So  in  large  eddy  simulation,  the  spatial  filtering  for  any  transported  field,  the

transported field could be one of the velocity components, it could be temperature and so on.

So it is defined using a filter function.

So suppose phi were our variable or flow variable so phi bar x t is defined as the integral of

this convolution G x x prime delta, this is our filter function multiplied by our unfiltered or

original flow variable phi x prime t dx prime. So this integration is carried out over the spatial

domain and here where G is the filter kernel and this delta is the cut-off width. Now we

would  see  that  we  will  actually  do  not  have  to  perform  a  complicated  3-dimensional

integrations.

It is just a conceptual step okay and there is one more comment in order. Here we have used

overbar, but  please  remember  in  the context  of large eddy simulation  overbar  would not

denote Reynolds averaging, it denotes a filtered quantity that is to say it denotes a result of

applying this filter G x x prime delta on our flow variable phi. So hope there is no further

confusion.
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We are going to  use this  overbar to represent  a filtered  flow variable.  Now some of the

popular filter  kernels in large eddy simulation is one Gaussian filter, top-hat or box filter

which essentially is linked to let us say our mesh size and if you are working for spectral



simulation that is to say our numerical simulations are being performed in spectral domain,

we can also use spectral cut-off filter.
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Okay let us see what this filtering operation employ? It basically a size that look the eddies of

size which are larger than delta  they are large eddies and they represent  our resolved or

filtered field, while eddies of the size smaller than delta are small eddies which are filtered

out by this filter and which must be modeled. Now this cut off width delta can in principle

have any size back in theory or in practice what do we do?
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We choose a value which is almost of the same order as that of a full grid size because a

value smaller than typical mesh size in our finite element, finite volume or finite difference

simulations is meaningless. So the most common value is an averaged mesh size for instance



this delta for a structured mesh can be obtained as delta=cube root of delta x delta y delta z

where  delta  x,  delta  y  and  delta  z  they  represent  length,  width  and  height  of  a  typical

hexahedral element.

So you can think of this  delta x,  delta y and delta z to be the mesh sizes in x, y and z

directions on a structured grid in a finite difference method or in finite volume method or

they could be  sizes  of  the finite  element  if  you have used hexahedral  elements  in  finite

element simulation. Similar estimates could also be obtained for tetrahedral elements in finite

element simulations and so on.

So in a nutshell this delta represents an average value or average length linked to our finite

element or finite volume cell or finite difference grid.
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And based on this filtering, filtered or resolved velocity that can be expressed as vi bar x t

remember the filtered velocity or any filtered variable for that matter it would be function of a

spatial coordinate as well as the time. So this symbolically represents G x, x prime, delta vi x

prime t dx prime and application of this filtering procedure is very simple that application of

filtering operation to continuity equation for incompressible flows that leads to a very simple

form.

Only the time derivative term which is not there for incompressible flow we have got only

one term here that is divergence term so del/del xi of rho vi bar=0. So if you remember our

original equation was del/del xi of rho vi that was our original continuity equation. The only



thing which has changed for the filtered equation is we have just replaced vi by the filtered

velocity vi bar.

Similarly  let  us  now apply  the  filtering  process  to  our  momentum equation.  So we can

substitute  each  term  or  each  variable  term  in  our  momentum  equation  by  the  filtered

counterpart and that would give us the filter momentum equation for instance.
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And the second term is the convective term, the third term is the pressure gradient and the last

one is our stress term okay. So if we remember our original equation was simply del/del t of

rho vi+del/del xj of rho vi vj=-del p over del xi+del tau ij/del xj. I have noticed the source

term because that would remain unchanged from the filtering operations. If it is required we

can always incorporate here.

In majority of the flows the source time can be observed in a pressure term so that is why we

have not put here explicitly. So remember what we have done.  What  is  the net effect  of

filtering operation? Vi has been replaced by vi bar in the first term so the temporal term

becomes del/del t of rho vi bar. Similarly in the second term the convective term, vi vj bar

this product is replaced by vi vj overbar.

So this convective term becomes del/del xj of rho vi vj overbar=-del p bar/del xi. We have

just  replaced  p  by  the  filtered  pressure  field+del/del  xj  of  tau  ij  bar. Now tau  has  been

replaced by the filtered counterpart. So this tau ij is defined as mu times del vi bar/del xj+del



vj bar/del xi that is to say all that we have done is in this definition of tau ij we have just

replaced a vi and vj by vi bar and vj bar that is the filtered velocity components.

So this equation has got a form very similar to our original Navier-Stokes equation except for

this convective term because in convective term now we have got here a cross correlation

term vi vj overbar. So we have now somehow got to change this term and for that purpose

what do we do?
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To represent  the convective  term in terms  of  the  resolved velocity  field  let  us  introduce

subgrid  stress  term and this  is  also  referred  to  as  subgrid  scale  Reynolds  stress  term in

analogy with our Reynolds stress models or what we call Reynolds averaged Navier-Stokes

equation where we call a term involving velocity fluctuations as a Reynolds stress term. In

LES literature, some people prefer to use a term subgrid scale Reynolds stress term.

And this particular tensor is defined as tau ij let us use a super script S to differentiate it from

our Reynolds stress and RANS models. So tau ij super script S=-rho (vi vj overbar that is the

filtered value of this product of vi and vj-vi overbar into vj overbar) and introduction of this

would be now this –rho times vi overbar vj overbar that can be transferred to the left hand

side and the remaining terms could be observed put in the right hand side to get a form which

is now analogous to our original Navier-Stokes equation.

Now this subgrid stress what does it represent? It represents the large scale momentum flux

which is caused by small or unresolved scales and since it involves a term which we cannot



compute explicitly using our filtered velocity values that is vi bar and vj bar, this term vi and

vj overbar cannot be computed in terms of vi bar and vj bar explicitly. So this whole term this

tau ij S it has to be modeled to ensure the closure of filtered Navier-Stokes equation.
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And this modeling is referred to as subgrid scale modeling. Now let substitute this tau ij S in

our filtered equation and rearrange the terms del rho vi bar/del t+the next one is convective

transport term del/del xj of rho vi bar vj bar=-del p bar/del xi so this represents a pressure

gradient  term+del/del  xj  of  tau  ij  bar+tau  ij  S.  Now tau  ij  bar  that  is  represented  in  or

expressible in terms of velocity strain rate tensor.

And this tau ij S that is something which we have to obtain using our subgrid scale model,

but if you look at the form this form is exactly same as our original Navier-Stokes equation

except for this additional term on the right hand side, which we would compute somehow and

incorporate. So any code which we have written to solve our Navier-Stokes equation so any

standard Navier-Stokes solver can state may be used for large eddy simulation.

We do not have to solve for separate partial differential equation in this case the way we did

in the case of the RANS models typically let us say our k-epsilon model or Reynolds stress

model where we have to solve for additional partial  differential  equation, here we do not

require that in our large eddy simulation. Now we have to find out the expression for this

subgrid stress term.
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So there are many subgrid scale models have been proposed in the literature starting from

Smogorinsky model in 1963. Smogorinsky was the first person to come up with the large

eddy simulation for atmospheric boundary layer and there he proposed a very simple model

in analogy with the Boussinesq eddy viscosity proposition and there are many improvements

proposed over Smogorinsky model.

So one is called scale similarity model, which was proposed by Bardina et al in 1980. Then

dynamic subgrid scale model. I have just mentioned only the most popular ones of them here.

There is famous research going on to come up with better and better subgrid models based on

the DNS data and very accurate experimental results. So for more details, please see the book

on computational fluid dynamics by Versteeg and Malalasekara.

And for even more details you can see the book on turbulence by Lesicur in 2008. In fact, this

one full book by Lesicur, which is devoted to large eddy simulation. So that will contain the

models developed up to year 2004 and still research work continues to obtain more and more

improved large eddy simulation models.
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Now let us have a look at Smogorinsky model. So Smogorinsky model is an eddy viscosity

model that is how its inspiration came from there from the eddy viscosity model, which we

have discussed earlier in the context of Reynolds stress or Reynolds averaging process. So in

this case, the local subgrid stress is taken to be proportional to the local rate of strain of the

resolved flow.

That is to say this tau ij S is our subgrid stress tensor=2 mu t purposely use small t here to say

that this mu subscript small t is our subgrid scale eddy viscosity. So tau ij S is twice of mu t S

ij bar which S ij bar is our strain rate tensor based on resolved velocity field that is S ij is half

of  del  vi  bar/del  xj+del  vj  bar/del  xi  okay+next  term is  1/3  tau kk s  delta  ij.  So this  is

Smogorinsky model.

Now here to use this model we need an estimate in the modeling constraint how do we obtain

an estimate of mu t? So that is the modeling part okay. So what Smogorinsky proposed is this

SGS eddy viscosity it is proportional to the subgrid length scale delta and a characteristic

turbulent velocity.
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Now a turbulent velocity can be obtained by the product of the length scale delta and a scalar

product which we can obtain from our strain rate tensor. So let us call it as magnitude of S so

this we can write mu t S rho times Cs square delta square S bar where this S bar magnitude is

given as square root of S ij overbar S ij overbar. So this S ij overbar*S ij overbar this is a

doubly contracted tensor product of a strain rate tensor.

So that will give us a scalar quantity. Take the square root of that that is what this particular

symbol S bar modulus represents. So this S bar can be easily evaluated from our resolved

velocity field, we can easily calculate that, delta is known to us, rho is of course known to us

and CS is a constant value, which we call a model parameter. Now this CS is not a universal

constant.

It depends on the type of flow and different values have been suggested for different types of

flows.
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For instance, for isotropic turbulence CS was taken as approximately 0.2, for channel flows a

lower value of CS=0.06 or some people use 0.1 that is usually recommended. Similarly for

wall-bounded flows if you use this when CS=0.06 or 0.1 is too larger value. So yet another

modification was suggested that for reasons close to the wall this value is reduced further

using van Driest damping.

This was proposed by van Driest and that is why it is called as van Driest damping that is to

say reduce the value of this constant or this dimensionless number any valuation for eddy

viscosity further. So CS close to the wall would be expressed as CS 0 where CS 0 could be

0.1  or  0.06  (1-exponential  of  –n+/A+)  whole  square  where  this  n+  represents  a  non-

dimensional distance involved that is n+=n u tau/nu.

Nu is our kinematic viscosity, u tau is what we call wall shear velocity, which is given in

terms of shear stress of the wall that is u tau=square root of tau W/rho and A+ is a constant

whose value is approximately taken as 25. So this is our van Driest damping and large eddy

simulation based on Smogorinsky model normally makes use of the van Driest damping close

to the wall for wall-bounded flows.
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Next let us have a very brief look at scale similarity model. The basic region which Bardina

et al argued were that that important interactions between resolved and unresolved scales.

They would involve what? They would involve the smallest resolved eddies and the largest

eddies  of  unresolved scales.  So their  interaction  is  the  one which  is  most  important  and

maybe the isotropic model may not be able to incorporate that interaction.

So what we should do is there is a similarity, which exists between these smallest resolved

scale and still smaller unresolved scales. So if we can use a double filtering that can help us

out so that is based on this argument. Bardina et al gave which is scale similarity model.

There is tau ij S=-rho vi bar vj bar-vi double overbar*vj double overbar where double overbar

indicates the quantity that has been filtered twice that is we have applied the filtering twice to

determine the values of these velocity components.

Now there is some problems with this model that though it correlates very well with actual

SGS Reynolds  stress,  but  it  hardly  dissipates  any  energy. So  turbulent  flow simulations

usually blow up if you use this model.
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Hence  to  stabilize  the  computations  additional  damping  is  introduced  in  the  form

Smogorinsky model. So we add that additional damping and that leads us to what we call a

mixed model. The first part is our scale similarity model and the second one is similar to our

Smogorinsky model. So this mixed model is tau ij S=-rho vi overbar vj overbar-vi double

overbar vj double overbar+2 rho CS square delta square modulus of S bar*S bar ij.

And this scale similarity model with enhanced damping it works pretty well and it gives us

what we call stable large eddy simulation model. There are many more models, which are

available, but we do not have time to discuss them in detail in this course. So I would refer

you  to  look  at  some  of  these  book  references  for  turbulent  flows  for  the  most  recent

turbulence models including the more advanced large eddy simulation model.

Please have a look at  the book by Lesicur et  al  turbulence fourth edition,  this  book was

published in 2008 by Springer.
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Similarly for details of turbulent flows including different scales and turbulence models you

can have a look at turbulent flows book by Pope et al. For numerical simulation related thing,

Chung’s book also gives us quite some details similarly you can have a look at the book by

Ferziger  et  al  on  computational  method  for  fluid  dynamics  and  this  Versteeg  and

Malalasekara’s book on finite  volume method that  is  introduction  to  computational  fluid

dynamics.

The finite volume method this has got one full chapter on numerical simulation of turbulent

flow that is on turbulence modeling it also gives you in bit more detail many RANS models

and some earlier models and few indications of which model to use in what situation. What

are the advantages and disadvantages of different models and which is supposed to be used in

certain flow situations?
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So please have a look at that chapter in this book. Next references on what we sort today

related to large eddy simulation, we referred this scale similarity model of Bardina et al, this

Bardina, Ferziger and Reynolds which was derived in 1980 called improved subgrid scale

model  for  large eddy simulation.  Similarly, we briefly  mentioned dynamic  model  so this

dynamic model it computes this CS coefficient dynamically depending on the local situation.

So it is called dynamic subgrid scale eddy viscosity model and Smogorinsky model which

was original or what we call initial large eddy simulation model. As far as this particular

course is concerned, we would stop here. We are not going to discuss more turbulent models

in details. So further details as I mentioned please have a look at these 2 books, the book by

Lesicur and book by Versteeg and Malalasekara, which will give you a lot more information

regarding the turbulent flow simulations.

So for this module we stop here. In the next module, we can see few practical aspects of CFD

linked with grid generation and what else we need to do to validate our CFD simulations.


