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Reynolds Averaging and RANS Simulation Models

Welcome to the second lecture on module 9 on numerical simulation of turbulent flow. In this

module, we have discussed the features of turbulent flow, what are the basic elements which

differentiate the turbulent flows from laminar flows and we also discussed briefly the numerical

simulation strategies of turbulent flow and how different length scales and time scales, which are

present in turbulent flow make our life pretty difficult.

So we had a brief look at the main simulation strategies and we had also had a look at the time

cost of simulation if you just want to solve simulate all length and time scales in a turbulent flow

using the so called DNS or direct numerical simulation strategy.
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Now next we are going to have a look at what we call a RANS turbulence model and in the next

lecture we would cover what we call large area simulation. So let us have a recap of the previous

lecture.  We  discussed  the  basic  features  of  turbulent  flow,  its  dissipative  nature,  random

fluctuations, which form integral part of turbulent flow, its unsteadiness three-dimensionality,

diffusive nature and its dissipative nature.



(Refer Slide Time: 01:36)

We also discussed the various other features, the length scales which are present, their rough

estimation,  and the  numerical  simulation  strategies,  namely, the  direct  numerical  simulation,

which would involve the resolution of all length and time scales requiring very fine grid, which

makes DNS impractical for industrial flow simulations and we also looked at the time scales. We

can use DNS primarily for research purposes to understand the basics of fluid dynamics, the

turbulent flows and to refine what we call the turbulence model used in RANS and large area

simulation.

We also briefly discussed the Reynolds proposition of what we call Reynolds decomposition and

this way, we are going to pickup form.
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We will start off our lecture on Reynolds averaging and RANS simulation model. RANS stands

for Reynolds Averaged Navier-Stokes simulation and RANS simulation models are the ones,

which are today the practical tool for industrial scale simulations. Only recently, with the advent

of very high performance computers available with big corporations that people have been trying

to use large area simulation for final design comparisons.

For  the  initial  design  and design  a  traditional  cycle,  RANS is  still  what  we can  practically

employ. So we will have a look at some of the RANS models in this lecture. So the outline

lecture, we would first have a look at the so called Reynolds averaging procedure, which is used

in Reynolds decomposition.

(Refer Slide Time: 03:32)



Then we would derive so called Reynolds Averaged Navier-Stokes equations. In short, they are

called RANS equations and we will look at few major turbulence models. Why do we need these

models that would become apparent when we have a look at Reynolds Averaged Navier-Stokes

equations, which have additional terms, which must be modeled and this turbulence models they

try to come up with some formulae for those unknown additional terms in terms of the primary

quantities.

Now this is what we had discussed in the last lecture, the Reynolds decomposition. (()) (04:12)

suggested that we have flow variable phi in a turbulent flow field. It can be broken into two

parts, which can be attributed to the turbulent fluctuations, which are random in nature and if a

flow were statistically stationary, other part could be called time averaged value, so that is to say

that for any variable phi.
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We can write phi at a special location x and time instant t. it can be written as sum of 2 parts phi

bar x, now this particular part the average part or mean value part, it is independent of time. It

only depends on the spatial location + high prime x, t. So phi prime x, t that represents randomly

varying fluctuating components of the scalar phi. Now this phi could be one of the velocity

components. It could represent density in compressible flows and pressure or temperature.

So any flow variable, which we encounter in turbulent flows might be decomposed using this

simple strategy in terms of its  mean value and fluctuating components.  Now this is  specific

reason  why  we  wanted.  In  industrial  flow  simulations,  we  are  interested  in  time  averaged

quantity. We are not interested in what happens to the flow variables at every special occasion at

each instant of time, doing that would be next impossible for large scale industrial simulation.

We are interested in average quantities like we want to know the forces drag left, the pressure

drops occurring across a length of a pipe or piping material  and so on. So we are primarily

interested in what we call the gross quantities or average quantities and it does not make much

sense for us to try and resolve all the length and time scales in our simulation, that is what we

would attempt in direct numerical simulation that would be a waste of time.

So we would try to find out these time averaged quantities through our simulations. In terms of

these quantities, we can calculate the values of engineering interest. That is to say the force is



acting on the surfaces that in terms of what we call as a net drag force or lift force or the pressure

drop energy loss and so on. Now we have to use this word phi or average, how do you refine

these average terms.

So what Reynolds suggest is that if you are dealing with statistically steady turbulent flows that

is to say the flow rate remains constant with respect to time. if you take the average over a fairly

large time period. So in that case for such flows, which are formally called statistically steady.

(Refer Slide Time: 07:18)

Reynolds averaged the time average and we would define it as phi bar x=limit T tending to

infinity 1/T 0-T phi xt dt. Now this capital T represents that averaging interval which must be

large  compared  to  the  typical  time  scales  of  fluctuations.  Otherwise,  we  would  not  get

statistically averaged value of the scalar field phi at special location x.
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But in case of the flow were inherently unsteady, that is to say the above fluctuations, but even

the average flow rate is varying with time. Suppose, we have taken pipe flow and we are steadily

increasing the flow rate through the pipe network. So if the flow rate even in average sense that

is varying or changing with time. In such situations, we cannot use a time average. So we have to

define a different averaging procedure.

And now in this case our phi bar would not be just a function of this spatial location x, it will

also  depend  on  time  and  we  would  define  it  using  what  we  call  unsummable  average.

Unsummable average is defined in terms of what we call identical experiments if we had had an

opportunity to perform the experiments in identical conditions and each time, we measure our

variable pi at different locations in time.

So at a given location, at a given time, let us take out N number of measurements and let us take

average of those N number of measurements. So each phi N xt that represents one measurement,

we have taken N number of measurements, take their average and this N should be fairly large

number to give us what we call  unsummable average and this  phi bar xt would be now the

unsteady average term and the related arrays of equations what we call, those are called unsteady

arrays.



But  most  of  the  time,  you would  be  dealing  with  time averaging  and if  you look at  the  2

definitions,  which we had in the previous slide, which is defined in terms of integral of the

quantity  phi  xt  over  time  or  in  terms  of  this  summation,  both  of  them are  basically  linear

operations. So there are certain consequences of this linearity.

(Refer Slide Time: 09:44)

There are decomposition which we had that was defined as sum of 2 quantities that is a linear

operator.  Similarly,  the  averages  which  we  refined  those  were  defined  in  terms  of  linear

operators.  Integral  again is  essentially  it  can be represented as summation,  which is  a linear

operator, similarly an unsummable average we had some summation, so that is again a linear

operator and there is certain algebraic rules, which we can formulate for algebra of averages and

fluctuations of any two flow variable phi and psi.

The way we had defined our time averaged values, so if you take Reynolds decomposition, if

you want to find out average of the fluctuation, what do we get. Now let us briefly have a look at

whether this particular thing are we satisfied with this phi or average would be 0.
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So remember we have defined our decomposition phi xt, this was defined as phi bar x+phi prime

xt. For the time being, for the sake of simplicity, I am going to drop the arrow operators from x

and we would presume that where we write x, that represents the 3 dimensional coordinates of a

point. Now how did you find our average operator. This phi bar x, this was defined as limit T

tending to infinity 0-T phi xt dt 1/T.

We would  say  that  wherever  we  use  the  over  bar  that  represents  this  particular  Reynolds

averaging operator or Reynolds averaging procedure. Now let us apply this procedure to our

decomposition.  So let us apply this integration process or this averaging process on both the

sides of equation 1. Apply this averaging process to both sides of equation 1. Then what we get.

On the left hand side, we will get phi bar and with this what we will get after averaging.

If you average this phi bar xt, we get simply phi bar, what would be the time average of an

average quantity. Remember this phi bar does not depend on time. So if you want to take its

average over the long time interval, it will remain phi bar so the first on the right hand side what

we get, that remains as phi bar x. The next term which we had was this phi prime bar, t, so what

do we get from here. It is obvious enough that average of the fluctuations =0.

So this is first rule of our Reynolds averaging procedure. Now what will happen if you want. Let

us have a look at the next few rules on this algebraic process. This we have already clarified that



average of the average, that will remain phi bar. The next thing is differentiation and integration.

They commute with this averaging process. A differentiation also represents a linear operation.

So that is what we say that differentiation and averaging process they commute.

That is why we get the del phi/del s over bar, that is average of del phi/del s is same as the

derivative of del/del s of phi bar. Similarly if you had an integral phi ds, s average is same as the

average of phi bar ds. So in nutshell, what it means is our two linear operations, for instance in

this case the differentiation and averaging, they commute. Similarly integration and averaging,

they also commute, similar.

If you have sum of 2 fluctuating quantities, phi and psi, the sum of that 2, that would represent

the third quantity, which is fluctuating with time. How do we get the average of that quantity.

That is simply given by the average of 2 quantities. So phi + phi bar=phi bar+psi bar. Now let us

verify these terms. But when we have a product, now remember this product is no more a linear

operation. So product of phi*psi, its average would be given by these 2 terms.

That is phi bar + phi bar*psi bar+average of the product of the fluctuating components phi prime

and psi prime.

(Refer Slide Time: 15:46)



Suppose you want to find out average of phi+psi, how do you work it out. By definition this is

limit T tending to 0 1/T integral 0-T phi xt+psi xt dt. By the basic rule of algebra, we know this

integral  can now be broken into 2 parts. Integral  of the first function+integral  of the second

function, so we get (0-T phi xt dt+0-T psi xt dt), limit again, the limit of 2 quantities or the sum

of 2 quantities=the limit of each individual quantity.

So limit T tending to 0 1/T 0-T phi xt dt+limit T tending to 0 0-T psi xt dt and you can easily

recognize these 2 elements, they are nothing but the respective averages phi bar+psi bar. Now let

us have a look at  what happens if you want to find out the average of the product of the 2

functions. So we want to find out what will happen to phi to psi. Now let us use our Reynolds

decomposition.

So phi can be expressed in terms of phi bar+phi prime and psi can be expressed as psi bar+psi

prime and we want to apply this over averaging operator to both of it. Now let us multiply an

open product, so we phi bar psi bar+phi bar psi prime+psi bar phi prime + phi prime psi prime.

So here we want to take average of these quantities, which are being separated by additional

operator. So this overall summation can be broken by the average of the separate quantities.

So we get this phi bar psi bar average+phi bar psi prime average+psi bar phi prime average+phi

prime psi prime average. Now remember the way we have defined this average of phi bar and

average of psi bar is independent of the time, so this would essentially be the product of phi bar

psi bar.
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Similarly, from the next term phi bar comes out and we get psi prime bar+psi bar and phi prime

bar+phi  bar  psi  prime  whole  over  bar.  We have  just  learnt  earlier  that  the  average  of  the

fluctuations that is 0. So these terms which contain the average of fluctuating terms only. This

becomes 0 so we get the average of the product of 2 functions phi psi that is given as the product

of the individual averages + average of the product of fluctuations.

So look carefully, the average of product of the fluctuations that will not be 0. That will depend

on how these 2 quantities are correlated. Now we can use these rules and apply these rules to our

Navier-Stokes equations to obtain the so called Reynolds Averaged Navier-Stokes equations. So

the summary of the equations on the slide and now let us see how do we actually obtain these

equations.
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So first one we would like to find out, we would apply Reynolds averaging procedure to our

continuity equation.

(Refer Slide Time: 21:09)

So Reynolds Averaged Navier-Stokes equations and for the time being, we will discuss the case

of incompressible flows for which density is constant. This is slight difference procedure for

obtaining  this  Reynolds  averaging  process,  which  is  referred  to  forward  averaging  for

compressible flows or variable density flows, that is something I would leave you to explore

from the literature.



For the time being, let us focus on the continuity equation for our incompressible force. This will

be del rho/del t term that vanishes so we get del/del xi=0, vi is our velocity vector. So apply

averaging process to it. So apply Reynolds averaging to the above equation. Now remember the

rule which we had learnt earlier that differentiation and averaging process they commute. So this

will be simply del/del xi of vi bar.

So thus our time averaged continuity equation becomes del vi bar/del xi=0. Now sometimes in

our calculations,  we keep densities together. Densities are constant so that it  does not really

matter if you want to put it inside the brackets. So del vi bar/xi. So these are 2 forms, which are

frequently used in numerical simulations. Both of them are basically identical for incompressible

flows. Next let us work on our Navier-Stokes equations and we will look at each term separately

and find out its average.
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So Navier-Stokes equations were given by del/del t of rho vi+del/del xj of rho vi vj=-del p/del

xi+del/del xj of tau ij+rho vi. This was our time dependent Navier-Stokes equation. So now let us

apply averaging process to each terms. So apply Reynolds averaging to each term. The first term

contains a time derivative. So del/del t of rho vi, we want to find out the average of it. Remember

again that averaging and differentiation that commute, so del/del t of rho vi average.



Rho was basically a constant for incompressible flows. We can also write this as del/del t of rho

vi bar. So this is our first step. The tricky part is the next term, which is convective term del/del

xj of rho vi vj over bar. So the averaging process that will commute with our differentiation

operator, so this is del/del xj of rho vi vj over bar. Now remember what we have learnt earlier,

recall that formula.

Recall that the product of phi and psi, their average is given by the product of phi bar psi bar+phi

prime*psi prime average that is average of the product of fluctuating components. So use it in

equation 3 so therefore, equation 3 becomes del/del xj of rho vi vj over bar=del/del xj of rho vi

bar vj bar+del/del xj of rho vi prime vj prime over bar. Similarly, the two terms on the right hand

side they are linear operators. So we can straight away apply the averaging process.

Bi is a source term or what we call body force term which would actually not depend on the

turbulence. It will be fixed quantity.

(Refer Slide Time: 28:06)

So thus Reynolds averaged Navier-Stokes equation becomes del/del t of rho vi+del/del xj of rho

vi bar vj bar+del/del xj of rho vi prime vj prime over bar=-del p bar/del xi+del/del xj of tau ij

bar+rho vi. Now what we normally do is, transfer this term, which involves fluctuations to the

right hand side and club it with our stress term. So rearrange del/del t of rho vi bar+del/del xj of

rho vi bar vj bar=-del p bar/del xi+del tau ij bar del xj-del rho vi bar vj bar del xj+rho bi.



So this is what is referred to as Reynolds Averaged Navier-Stokes equation. On the left hand

side,  you see this equation is basically  a transferred equation for time averaged or Reynolds

averaged velocity components vi bar. So we have the first term is our temporal term this will

vanish if the flow is statistically steady. Next term is convective term in terms of the averaged

components vi bar and vj bar.

The first term on the right hand side that is gradient of time Reynolds averaged pressure field, the

next term is delta ij bar/del xj bar that is in terms of our Reynolds averaged velocity components

as far we would compute del ij bar, but we have got additional term here. That is bi prime, vj

prime over bar. We do not know what are these components. These are unknown components

and in fact this represents a second order terms, which will have 9 components.

So the averaging process has introduced an unknown tensor quantity, which must be modeled

and that reasons of Reynolds stress models,  which must be used to ensure what we call  the

closure of these equations. So similarly if you had a scalar transport equation, we can again apply

our averaging procedure. Left hand side remains in the form very similar to our normal equation

del/del t of rho phi bar+del/del xj of rho vj bar phi bar=del/del xj gamma of del rho phi/del xj+qj

bar.

This is an additional term. We normally use this symbol tau ij superscript r and we call this as

Reynolds stress as defined by –rho vi prime vj prime, so this is fluctuating components. They

give rise to a stress like term. This was the reason why we call them as Reynolds stress. Similarly

this is a turbulent flux, which is in terms of the fluctuating components of velocity would lead to

additional scalar transport and thus the reason why it is referred to as turbulent flux.

Let us have a look at the physical significance of these Reynolds stress terms.
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So these stresses the way we saw. They involve time correlation that is why we had this vi prime,

vj prime over bar. That is the time correlation of the fluctuating components velocity. The main

consequence of this  velocity  fluctuation turbulence is  to enhance shear stresses and thus the

transport of momentum within the flow. So the Reynolds stress terms contains components that

are velocity fluctuation correlations  and you can verify this is a symmetric  tensor and has 9

components.

So we will have basically 6 unknown components for this symmetric stress tensor and those have

to be somehow modeled in terms of Reynolds averaged velocity field. So this is what majority of

turbulence  models  attempt  to  ensure  closure  of  Reynolds  Averaged  Navier-Stoke  equations.

Similarly,  the  turbulent  fluxes  they  arise  from  the  convective  transport  due  to  turbulent

fluctuations, fluctuations of the velocity field as well as fluctuations in scalar component.

So when this equation is time averaged, the influenced fluctuations over averaging time periods

include via these additional flux terms, which represent enhanced heat transfer or enhanced mass

transport and via result of the Reynolds averaging applied to our conservation equation and their

sole purpose is to incorporate the effect of turbulence in enhancement of the transport of the

respective queries.
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Now let us have a look at some of what we call RANS turbulence model Reynolds Averaged

Navier-Stokes turbulence models and we can classify these turbulence models broadly into 2

categories. The first one is what we call Eddy viscosity models and these models, they employ

what we call eddy viscosity assumption based on Boussingsq preposition.

The preposition of Boussingsq was that we can incorporate these enhanced effects coming from

the fluctuating components via an additional or enhanced viscosity and since that viscosity is

basically caused by the eddy’s or what we call fluctuating components of the velocity field, so

that is why this term eddy viscosity is used here. Other model is what we call Reynolds stress for

the velocity field that is for Navier-Stokes equations and Reynolds flux model for our scalar

transport equation.

So now these imply additional transport equations for Reynolds stress tensor and turbulence flux.
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Now let us have a brief look at few other categorization. This turbulence models can also be

categorized based on the number of additional transport equations, which we must solve. For

instance if you are solving a time dependent problem or incompressible flow problem, we have

to  solve  continuity  equation  and  3  momentum  equations.  So  we  have  to  solve  4  partial

differential equations in laminar flow.

For  turbulent  flow,  to  take  care  of  these  fluctuating  components  or  what  we  call  RANS

components, we have to use additional number of partial differential equations. So how many

number of additional transport equations which we need to employ a categorization of RANS

models can be based on that as well. So the number of PD additional PDs, which we must need

to enforce closure.

The  simplest  one  would  be,  we  do  not  use  any  additional  partial  difference  equation.  We

somehow get an estimate of this  eddy viscosity based on the time averaged solution for the

velocity field and this popularly referred to as Prandil’s mixing length model and since there are

no equations, no additional PDs are involved, this is referred to as 0 equation model. Then we

can  have  one  additional  PD for  instance  one  model  known as  Spalart-Allmaras  model  that

implies 1 additional partial differential equation to compute the eddy viscosity.



So that is why it is referred to as one equation model, but the most popular in industry are what

we call are 2 equation models. For example k-epsilon model and k-omega model are algebraic

stress  models,  which  imply  2  additional  transport  equations,  2  additional  partial  differential

equations. For instance k-epsilon model, you will have 1 equation for this kinetic energy k, and 1

equation for the dissipation term epsilon.

If you go for Reynolds stress model, we have basically 7 equations. So Reynolds stress model is

referred to as 7 equation model. So you can just realize that if you want to solve incompressible

flow  problem,  we  had  four  equations,  1  corresponding  to  continuity  equation  and  3  for

momentum  equations  and  to  incorporate  these  Reynolds  stresses,  we  need  to  solve  for  7

additional equations, which will lead to a tremendous computational burn.

So thus far, these Reynolds stress models they are used rather infrequently in industrial CFD

simulations.
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Some  more  things,  which  we  must  remember  that  all  these  models  they  involve  empirical

numerical constants. They are called models. They have not been arrived from vigorous first

principles of continue mechanics, majority of them are based on an extensive experimental data

and empirical numerical constants have been obtained based on the validation of an assumed

model with experimental data.



These constants which we get from the experimental data of course, those will depend on the

circumstances of the problems for which the experiments were performed. So that is why these

constants are not universal in the sense that suggested values may not yield correct results for all

turbulent flows and hence care must be exercised in the choice of the model constants. We might

have one set of model constants.

Let us say in one type of flow and for a different type of flow, we have to go for either a different

model or we have to fine tune or we might have to change these model constants. The fine tuning

is typically achieved using 2 means that is we can perform extensive control experiments, that is

one. Another way is to use direct numerical simulation on a very small computational domain

performed very fine grid direct numerical simulation.

That can be used to fine tune the model constants in the RANS turbulence models. So both of

these approaches these are very active areas of current research in turbulent flows that is perform

direct numerical simulation on certain set of geometrics, certain flow situations and perform a

RANS simulation  for the same problem for similar  type of problem, which involves  similar

physics and then try to fine tune the model constants used in RANS model.

So that the RANS model gives the average quantities which are fairly close to what we would

obtain from direct numerical simulations. So it is still a very active open area of research. Now

we will have a look at Boussingsq preposition which we just referred to. Now this Boussingsq

preposition is based on 1 simple observation which Boussingsq had that looked if  we had a

simple laminar flow, viscous stresses they are proportional to what. They are related to velocity

gradients.
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So they are proportional to velocity gradients or what we call as strain rate tensor and normally

for new term includes we say that deviatoric components, they are directly proportional to what

viscosity  times  the  strain  rate  tensor.  So  can  we  do  the  same  thing.  So  with  tremendous

experimental  evidence  and  theoretical  evidence  to  suggest  that  the  rate  of  mixing  due  to

turbulence or the turbulent ADs themselves, they depend on the velocity gradients in the flow.

So based on those experimental  and theoretical  observations,  Boussingsq proposed that  even

Reynolds  stresses,  they should be proportional  to  the mean velocity  gradients  especially  the

deviatoric  Reynolds  stress,  it  is  proportional  to  the  mean  rate  of  strain.  So  in  terms  of  the

symbols, which of interest tau ijr that is what is our Reynolds stress tensor, which is =-rho vi

prime vj prime over.

This can be represented in terms of mu t*velocity gradient or strain rate tensors or mu t times del

vi bar/del xj+del vj bar/del xi-2/3 rho k delta ij. So the first term on the right hand side, you can

clearly say this is mean velocity gradient. The constant multiply which we have taken, in fact this

is not a constant. This would depend on position of the flow fields. It will vary from point to

point in flow field and this particular symbol.

Since we have used the same symbol which we used for viscosity. So this is referred to as mu t is

called dynamic turbulent or eddy viscosity. The term eddy is often used to correlate formally that



look these stresses arise because of the different eddies, which are there in the turbulent flows.

So that is why this mu t is called dynamic turbulent or eddy viscosity and the k, which we have

used in this relationship that is what is referred to as turbulent kinetic energy.

That is to say we obtained mu prime square over bar+v prime square over bar+w prime square

over  bar/2.  This  gives  us  turbulent  kinetic  energy per  unit  mass.  So  this  is  the  Boussingsq

preposition, which is the basis of eddy viscosity based turbulence models.
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Similarly, the same concept can also be applied to the diffusion of a scalar quantity that is to say

that  we can  say the turbulent  fluxes  will  also  be proportional  to  the  gradients  of  the scalar

quantity. So we can say this qjr, which we define as –rho vj prime phi prime over bar=gamma

subscript T del phi r/del xj, so this del phi bar/del xj. This is the gradient of the mean value of the

scalar field phi and this gamma subscript T, this is called turbulent or eddy diffusively.

Remember  this  gamma T or mu T which we have introduced earlier, these are not material

properties. These depend on the flow and they would vary from point to point. So we have to

obtain estimates of these quantities at each point in our numerical simulation and that is precisely

what turbulence models attempt to do. So we will take a few of the popular turbulence models in

the next lecture. For the time being, we will have just a brief look at the names.
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Eddy viscosity based RANS models, we will have a brief look at mixing length model. We will

briefly  look at  Spalart-Allmaras  model,  then standard  k-epsilon model,  for  the  improvement

model like k-epsilon RNG model or realizable k-epsilon model or k-omega model, I would refer

you to appropriate reference or other textbook. So today we stop here.

In the next lecture, we would have a bit more detailed look at few of these turbulence models and

Reynolds stress model and thereafter we will start off with large eddy simulation.


