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Lecture – 04
Mass Conservation: Continuity Equation

Welcome back to the next lecture module 2, Mathematical Modeling. Let us first have a recap of

what we had planned for this module. We discussed the conservation laws of the physics and we

discussed  notations  and mathematical  parameters.  We had planned  to  cover  the  derivational

governing equations of fluid flow and in today's lecture, focus would be on continuity equation

that is what we call mass conservation equation.

(Refer Slide Time: 00:53)

The next 2 topics, broad topics for mathematical classification and boundary conditions for flow

problems which we would be taking in subsequent lectures. Now let us have a recap what we

discussed in the last lecture.
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We had discussed the outline statements  of conservation  laws of fluid dynamics.  We briefly

outlined  what  we  mean  by  the  conservation  of  mass  for  the  continuum  system.  Then  we

discussed Newton's second Law of motion which gives us what we call momentum conservation.

We also talked about energy conservation and the constitutive relations which we require for the

modeling of different materials.

Then we discussed different types mathematical notations which are commonly used in CFD. We

saw in a given reference frame, how do we write our equations for a given physical law in

expanded form which would give us an equation linked to a specific reference frame, Cartesian

polar or cylindrical polar. We also looked at what we call coordinate free-form or direct notation

and we looked at Cartesian tensor notation and different conventions which we use for use of this

very simple and concise Cartesian tensor notation to represent our mathematical equations.

Then we discussed 2 theorems, the first one is Gauss Divergence Theorem which we said we are

going to use primarily for changing volume integrals into surface integrals and vice versa, and

the last theorem which we discussed what we call Reynolds Transport Theorem which allows us

to change the coordinate axes plus what we call a control mass system into a control volume-

based representation and vice versa.
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We will have brief recap of our Reynolds Transport Theorem because this is the one which we

are going to use very often today and in the next few lectures. Let us say that we have got an

extensive property, capital phi. Capital phi could be mass, it could be momentum, or it could be

energy and the corresponding intensive property, that is property per unit mass that we denoted

by small phi. So capital phi is defined as the volume integral of rho phi d omega.

Now the statement Reynolds Transport Theorem was that rate of change of phi for the system

that is d phi/dt for this control mass system that is the system whose mass is fixed, it consists of 2

parts when we represent it in terms of the integrals for the control volume, the first one is the

time derivative of the content of capital phi in the control volume that is rate of change of phi in

the control volume.

This term you also represent as temporal derivative and we can simply say we can denote it as

del capital phi subscript CV/del t+ we have to add what we call the net flux of phi through the

control surface which is represented by an integral over the control surface of rho phi v-vc. dA

where vc is the velocity of a chosen reference frame. So the second term on the right-hand side

essentially represents what we call net flux of phi through cs. We also call it as convective term

and we can use it and by notation for it, we can say this is capital phi. Out.

So essentially what Reynolds Transport Theorem say that we got a quantity capital phi, it is time



rate of change for a control mass system, is equivalent to temporal derivative of phi for a control

volume plus the net efflux rate of phi of the control surface and this is the one which we are

going to use in the derivation of continuity equation, derivation of momentum equation and the

derivation of energy equation subsequently.

Now in today's lecture, we would focus on our mass conservation equation which gives us what

we frequently call continuity equation in fluid mechanics and it is an outline of today.

(Refer Slide Time: 05:00)

We will first have brief review of kinematics as the different notations of terms which we use in

kinematic description of the flow. So various terms would be useful in representation of our

conservation laws. Then we will have look at integral versus differential forms. We will derive in

today's  lecture as well  as in  subsequent lectures,  integral  form as well  as differential  forms,

where do we need both of these forms, we will discuss briefly about these 2.

And thereafter we would obtain the integral form of continuity equation for an arbitrary control

body or what we call arbitrary domain and next, we would use mathematical jugglery to obtain

differential form of continuity equations, starting from the integral form. We will also obtain

differential forms based on its simple differential control volume and in this way, we would put a

full stop at today's lecture.
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Now let us start with a review of kinematics. We will have a look at how we define linear strain

rate, volumetric strain rate and rate of shear. Now before I proceed for definition of these terms,

let us have a look at one particular derivative which is referred to as material derivative.

(Refer Slide Time: 06:16)

How do we define a material derivative and what we mean by it. Material derivative is useful in

the fluid mechanics in the context of what we call Eulerian description of a flow. Suppose we

have got any filled quantity which is function of our x1, x2, x3 spatial coordinates and time. A

function defined for a given fluid domain. Now how do we find out the rate of change of F with

respect to time.



So now we can use the basic law of calculus and change in F can be represented as the because

this differential change in small dF, this is del F/del t that is partial derivative of F with respect to

time * the small time increment dt+del F/del x1 dx1+del F/del x2 dx2+del F/del x3 dx3. So now

what would be the rate of change of F with respect to time. Change of F following a material

particle of fluid, this would be given by dF/dt and this would simply become del F/del t, the dt

goes off, +del F/del x1 dx1/dt+del F/del x2 dx2/dt+del F/del x3 dx3/dt.

But now let us recall, the way we have defined our velocities. So the velocity component v1 is

actually dx1/dt. Similarly, v2 is dx2/dt and v3=dx3/dt. Therefore, our df/dt, this becomes del

F/del t+v1 del F/del x1+v2 del F/del X2+v3 del F/del X3. Let us write it a bit more concisely

using our tensor notation.

(Refer Slide Time: 10:26)

So dF/dt= del F/del t+vi del F/del xi or in vector form we can express it as del F/del T+v. del F/

So that is the expression for the rate of change of F following a material particle and that is why

we call this as material derivative. We can extract this derivative operator, d/ dt and this could be

written as del/del t+vi del/del xi or equivalently as del/del t+v. del. So this is material derivative

operator which essentially tells us the rate of change with respect to time for a material system.

(Refer Slide Time: 12:10)



Next, let us have a look at the strain rates which we would frequently use in the description of

the fluid motion and first let us concentrate on what we call, how would be define linear strain

rate. It would be worthwhile to note that in fluid mechanics, we do not talk about a strain per se

because that is meaningless for a fluid medium. So we always talk about in terms of the rate of

linear strain or rate of serious strain.

Now how would we identify or how would we define this linear strain rate. Suppose we have

chosen our Cartesian reference frame, x1,  x2 and x3. Our velocity  filled is  given by v as a

function  of  x  and  t.  Now  the  velocity  vector  v  can  be  expressed  in  component  form,

v1i1+v2i2+v3i3,  where this  i1,  i2  and i3,  these are unit  vectors  in x1,  x2 and x3 directions

respectively.

Let us just define the rate of linear strain in 1 direction, let us chose x1 direction and suppose we

take a very simple linear element. So let us chose a small linear element of it in infinitesimal

length delta x1, let it is ends be denoted as A and B. So x velocity of end A is called as v1, then

we can use Taylor series expansion and obtain the velocity at point B which is situated at  a

distance delta x1 to the right as v1+delta v1/del x1 delta x1.

Now this is the position of this small linear element at time T. After small time increment, t+delta

t, this element would have moved to the right under the influence of x velocity component. Now



let us say the change position is A prime B prime. Now this A prime B prime that represents the

changed element AB at time t+dt. How would we obtain the position of A prime, that is very

simple. Difference between A and A prime would be given by v1dt. Similarly this difference

between B and B prime, that can be easily obtained as v1+delta v1/delta x1 del x1*dt. 

Okay now can be obtain what is the length of segment A prime and B prime. So length of fluid

element A prime and B prime, this is simply equal to be B B prime+AB-A A prime, that is this is

= delta x1+v1+del v1/del x1 delta x1*dt-v1dt.

(Refer Slide Time: 17:04)

So if you simplify it, we get this is = delta x1+delta v1/delta x1 delta x1dt. So hence what is the

change in the linear scale or length of the segment AB, change in the length of segment AB, this

is = A prime B prime-AB=delta v1/delta x1 delta x1 delta t. So now we can define our linear

strain rate. So linear strain rate in x1 direction which is given by the time rate of change that is

1/dt of change in length that is A prime B prime-AB/the original length AB.

So if you do that, you would essentially get delta v1/delta x1 delta x1/delta x1 dt/dt, it is nothing

but delta v1/delta x1.
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We can use a symbol small e to denote what we call strain rate tensor. So e11 can be expressed as

delta  v1/delta  x1. Now this can be generalised and we can say that  linear  strain rate in any

direction,  coordinate  direction  xi  that  can  be  represented  as  in  direction  x  alpha  delta  v

alpha/over delta x alpha and here you would not use no summation over alpha.

(Refer Slide Time: 20:18)

If you go back to your solved mechanics class, what we learnt that volumetric  strain rate is

nothing but the summation of the rest of normal strains in 3 mutually perpendicular directions.

Suppose we take a small volume, let us call it as delta V, now this delta V can be given by delta

x1 delta x2 delta x3. So how do you define volumetric strain rate. Volumetric strain rate that

would be given by d/dt of delta v 1/delta V. So this is 1/delta x1 delta x2 delta x3 d/dt of delta x1



delta x2 delta x3.

Now we can expand the terms and we can easily see that this is equivalent to delta v1/ delta

x1+delta v2/delta x2+deltav3/delta x3 or in other words if use a symbol e subscript v. to denote a

volumetric strain rate, this is given by del v1/delx1+del v2/del x2+del v3/del x3 which we can

easily  identify as divergences of velocity  field.  Okay, so volumetric  strain rate  for any fluid

element that is simply obtained by finding out what is divergences of V at a given position.

(Refer Slide Time: 22:56)

Next important quantity is what we call rate of shear or shear strain rate. For this, we have to

consider small rectangular fluid element and find out what is the rate of change of the angle

between 2 line segments. Suppose we call these segments as AB and AC which were initially

perpendicular. What happens to these segments, what happens to the change in the angle as this

fluid element deforms under the effect of velocity field. Suppose new position of these elements

is given by A prime B prime and C prime.

So on the left-hand side, this is the position at time t. Now here we have got the position at time

t+dt where dt is infinitesimally small time increment. Now we can identify 2 angles, the change

with respect to the horizontal of the line segment A prime and B prime, let us call this small

angle as D alpha and the second change from vertical AC which was initially vertical, now it has

become inclined, let us call this angle as D beta.



So what is total change in the angle from 90 degree. So total change in angle, this is given by d

alpha+d beta.  So now we can define the rate of shear or shear strain rate,  we normally use

symbol gamma for shear strain and for rate, let us put a small dot over it, so gamma. x1x2 and

this would be it initial set AB, it is along x1 direction and AC is along x2 direction. This would

be defined as d alpha+d beta/dt. D alpha+d beta that represents the net change in the angle and it

is time rate we can obtain by dividing it with respect to dt.

Now let us see how we can obtain d alpha and d beta separately and for that we need to have a

look at the change in the positions, A shifts from A to A prime and this shift would be given by

the v2 velocity component at point A, so it is v2*dt. How much would be the change in B, this

change can be obtained if you look at the v2 velocity at B. So this will be given by v2+del

v2/delx1 delta x1, this would be the velocity at point B.

So v1 and v2, at point B, we have got the velocities, v2 velocity would be given by Taylor series

expansion as v2+del v2/del x2 delta x1. So we see that velocity, this multiplied by dt. So now

can we find out what is d alpha. D alpha would be v2+del v2/del x1 delta x1*dt-v2*dt.

(Refer Slide Time: 27:48)

Or in other words, this is = del v2/del x1 delta x1*dt and factor d alpha would be, this is an

angle, so we have to divide it by the arc length which is delta x1, this whole thing multiplied by



1/delta  x1,  so hereby we obtain  d alpha= delta  v2/delta  x1 dt.  Similarly, we can obtain the

expression  for  d  beta.  So  d  beta  would  be  given  as  delta  v1/delta  x2*dt.  So  therefore,

gamma.x1x2, this becomes del v1/del x2+del v2/del x1.

In fact, we can now generalise it for any pair of the directions, that is we can write, gamma dot

xixj as del vi/del xj+del vj/del xi. So this is expression for the rate of shear along 2 mutually

perpendicular directions.

(Refer Slide Time: 30:05)

Next can we define what we call strain rate tensor. Looking at the 2 previous definitions which

we had, we can define it as strain rate tensor. Now there are different symbols used, very often

people use symbol capital S or some people prefer to use small e. So this can be represented as

1/2 del vi/del xj+del vj/del xi. So we can easily verify that expression for linear strain rate which

we have defined earlier or the shear strain rate, these 2 are identical.

That is we can easily establish that eij=1/2 gamma ij., i is not equal to j and similarly with eii or e

alpha alpha, this becomes del v alpha/del x alpha, no summation over alpha. So in the tensor

form or direct notation, we can write S or e as 1/2 of gradient of velocity vector + a transpose of

the gradient  of the velocity. So this  is  what our strain rate  tensor looks like in terms of the

gradient of velocity vector.



Okay, next let us come back to a mass conservation equation or continuity equation. We know

from the basic physics that mass of a system is conserved that is to say if capital M represents the

mass of a system, it is time derivative has to be 0. Now how do you define mass for an arbitrary

volume omega. So M is defined as volume integral of rho*1 d omega.

(Refer Slide Time: 32:55)

Now  we  can  identify  if  we  compare  this  definition  of  mass  within  intrinsic  and  extrinsic

properties which we had introduced earlier in definition of Reynolds Transport Theorem. We can

clearly see that phi, capital phi is same as capital M and small phi =1.

(Refer Slide Time: 33:16)

So if we go back to our Reynolds Transport Theorem, see Reynolds Transport Theorem for a



quantity capital phi was d capital phi/dt for the control mass, this was given as del/del t of cv rho

small phi dV+the surface integral of rho phi v.dA, this holds true for an arbitrary control volume

and cm can be identified as the system which occupy this controlled volume at any time instant

capital T.

Now we have already identified our capital  phi is identical to M and a small phi that is our

intrinsic property in this case becomes 1 because M is defined as rho d omega or we can say that

this is rho*1d omega. So now let us put small phi =1 on the right-hand side and what we get a

dM/dt for a control mass system, this = del/delt t of rho dV+ the surface integral rho v. dA. So

now we have obtained the rate of change of mass for a control volume.

(Refer Slide Time: 35:28)

and we can now put it in the expression for this mass conservation equation dM/dt CM=0 and we

get this particular form for mass conservation equation and this is what we call the integral form

of mass conservation or continuity equation. It is given as del/del t or rho d omega/ CV+the

surface integral rho v.dA=0.

(Refer Slide Time: 35:58)



Now we can also just change it slightly and we can write it as the surface integral of rho v.dA=-

del/del t the volume integral of rho d omega. So this form of continuity equation tells us that the

net efflux rate of mass through the control surface is equal to the rate of decrease of mass inside

the  control  volume.  Now  let  us  have  a  look  at  simplified  forms  for  steady  flow  and  for

incompressible flows. What will happen to this mass conservation equation.

(Refer Slide Time: 36:33)

So continuity equation for a steady flows, so in this case del/del t of anything that is = 0. Hence

our continuity equation becomes surface integral of rho v.dA=0. Now let us have look at a simple

one-dimensional example of a steady-state compressible flow through a duct of variable cross-

section.  So a steady compressible flow through a duct. Let us identify station 1 as the inlet,



velocity at station 1 is v1, density is rho 1 and at outlet which we can indentify at station 2, we

have got density as rho 2 and velocity as v2 in x direction.

The hatched part  that denotes  the solid  boundaries of the duct.  Now let  us apply continuity

equation to this, what do we get. At the inlet, the area vector points in the direction opposite to

that of the velocity and at the outlet, the velocity vector and the area vector, they are in parallel

direction.

(Refer Slide Time: 39:06)

So surface integral s rho v.dA, this can be expressed as integral over area A1 rho 1 v.dA+A2 rho

v.dA. There will not be any contribution from the side portions because that is a solid boundary.

Now this rho v.dA at station 1 that will be given as -rho 1v1 integral of dA/A1+rho 2V2dA2/A2.

Please note this change negative sign comes because v1 and dA, these 2 v and dA vectors, they

are antiparallel at station 1.

So we simply get -rho 1v1A1+rho 2v2A2 and from continuity this equation, this would be equal

to 0. So this gives a simplified form for one-dimensional flows rho 1v1A1-rho 2v2A2. The next

simpler case would be that of incompressible flows. So what we mean by incompressible flow.

In the case of incompressible flow, density is constant that is to say it does not vary with time

and hence our del/del t integral rho dV, this becomes all integrally 0.

(Refer Slide Time: 41:31)



And the  simplified  form continuity  equation  becomes  integral  v.dA over  the  surface  of  the

control volume=0. So now let us stop here as far as the integral forms are concerned. Now these

integral forms are important because these we require in CFD if you are using finite volume

method.

(Refer Slide Time: 42:09)

Next let us proceeds and derive the differential form because that is what we would need if you

want to make use of finite element or finite difference methods. Now before we can proceed to

differential form, let see how we can obtain the differential form starting from our integral form

of continuity equation.
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So what was your integral form. In integral form, we had 2 terms. First was a temporal derivative

del/del t of rho dv+a surface integral. Now let us see what happens if we had a fixed control

volume, that is a control volume which did not change in time. For a fixed control volume,

integration and temporal derivative operator can be interchanged. So thus what we can write is

del/del  t  of integral rho dv over the control volume, this  is same as the volume integral del

rho/del t/dV. This is one part.

Next one is surface integral. Now let us transform this surface integral into a volume integral

using Gauss Divergence Theorem which we had looked at in the previous lecture. So the surface

integral is rho v.dA. Now what is equivalent volume integral, this remember that whatever we

have to the left of our dot operator, okay, we had to take divergence of that quantity. So it is

simply becomes divergence of rho vdV. So that is it, this is all. Now we have transformed our

surface integral into corresponding volume integral.

Next we are going to put these 2 expressions we have just derived into our integral form of

continuity equation if you call it as 1, so let us put this expressions 2 and 3 in our integral form

continuity equation 1.
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And  we  get  modified  continuity  equation  as,  it  becomes  integral  over  CV  del  rho/del  t

dV+integral over CV divergence of rho vdV=0. Now what we have got on left-hand side are 2

integrals with the same control volume and hence we can easily couple these 2 together and we

can write this as del rho/del t+divergence of rho V. This is what becomes our integral, integrate

this function over the control volume CV and this is = 0.

Now please remember our choice of the control volume was arbitrary and this integral equation

will hold good for an arbitrary control volume if and only if that integrand function that is the

term in this square bracket is identically 0. If that were not the case, what a situation in which it

can vanish. Suppose over half of the domain, we had del rho/del t+divergence of rho V that is

equal to, this particular function is positive.

In other half, it is negative, equal and opposite in magnitude, so that is 1 possibility in which case

this integral can vanish. Now in this case, what we can do, we can choose it another control

volume which is now entirely in positive half; even then, this equation must hold good but we

had assumed that del rho/del t+divergence of rho v were positive in that half.

So our assumption which we made earlier that is wrong, that this equation can hold good only if

this  term del  rho/del  t+divergence  of  rho v, this  particular  function  were 0 everywhere in  a

control  volume,  okay. So  that  is  what  we  say  in  mathematical  language  that  the  preceding



equation  will  hold  for  an  arbitrary  control  volume  if  and  only  if  the  integrand  vanishes

everywhere,  that  is  del  rho/del  t+divergences  of  rho  v=0 and this  leads  us  to  what  we call

differential form of continuity equation.

The first term is the time derivative of density and the second term is divergence of rho*v. So for

compressible  flows which particular  equation  represents  what  we call  transport  equation  for

density.

(Refer Slide Time: 48:41)

Now the  previous  vector  equation  can  be  written  Cartesian  component  form as  del  rho/del

t+del/del x of rho u+del of rho v/del y+del of rho w/del z=0 where u, v and w, they represent the

velocity components in x, y and z directions. Now this particular expanded equation can also be

written in concise Cartesian tensor notation as del rho/del t+del/del xi of rho ui=0, where ui

represents the velocity vector in ith coordinate direction.

Now what  are  simplified  forms  which  we can  have  of  this  differential  continuity  equation,

similar to what we had had earlier.
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Okay, now let us have look at simplified forms of continuity equation, differential continuity

equation. So let us have a look at the steady state flow. Now in this case, del rho/del t, this would

be  equal  to  0,  hence  our  continuity  equation  becomes  divergence  of  rho  v=0.  The  second

simplification could occur if we assume density to be constant, that is the case of incompressible

flow.

Incompressible flow, rho is constant. Now in this case, del rho/del t would again be 0 and rho can

be taken out and we can divide by rho and we get the simplified form, divergence of v=0. Now

in this  case,  the important  point to  note is  the divergence of v, what does it  represent.  This

essentially  represents  the  volumetric  strain  rate  and  it  is  consistent  with  our  assumption  of

incompressible flow.

Incompressible fluid cannot be compressed. So volumetric strain rate has to be 0 in that case. So

that is what this continuity equation also represents but it also tells us some more things.
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That in the case of incompressible flow, our continuity equation is merely a kinematic constant,

that is for incompressible flow, the continuity equation becomes only a kinematic constant which

must  be  satisfied  by  the  velocity  field  obtained  analytically  or  numerically.  This  will  have

important ramifications when we come to the numerical solution of Navier-Stokes equation for

incompressible flow and that is something which we will have a detailed look at when we come

to that topic.
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Now this differential form which we had obtained that was based on the integral form that we

took a generalised  integral  form and used Gauss  Divergence  Theorem and we obtained  our

differential  form. We can also obtain it  started from first  principle,  so differential  continuity



equation (()) (53:31).

Okay, so now let  us  have  a  look at  the  Cartesian  coordinate  system,  this  is  a  small  simple

differential element of length dx and dy and let us see, let us have a look at clearly. What is the

mass flow which is coming in at the left plane given by rho*u. Similarly the velocity at the left

plane is rho u. This particular function rho u at the right plane can be given as rho u+del rho

u/del x dx using Taylor series expansion. Same way, we can interpret this function rho v at the

bottom plane and the top plane.

(Refer Slide Time: 54:30)

Now let us see how we can derive our differential continuity equation using the simple Cartesian

element. So let us redraw the figure again. Rho u rho v give functions at negative x plane and

negative y planes respectively. Their values at the centre of the positive x plane will be given by

Taylor  series  expansion rho u+del  of  rho u/del  x  dx.  Similarly, in  the positive  y plane,  rho

v+del/del y of rho v dy.

Now let us take one direction at a time. So what is the mass flow which enters from the let plane.

So mass flow rate entering this control volume from negative x plane. This is nothing but rho*u

and the area of this plane is dydz. Now mass flux leaving the control volume from positive x

plane, that would be who u+del of rho u/del x dx*area dydz.
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So can we obtain the net rate of efflux, that is net outflow, net rate of mass efflux in x direction,

we will just simply subtract the inflow from outflow and if you do that, we get a very simple

expression, del of rho u/del x dxdydz. The same exercise we can repeat with respect to y planes.

So similarly net rate of mass efflux in y direction, this would be given by del of row v/del y

dxdydz and similarly in z direction.

So now what is the net efflux from the control volume. So therefore net efflux rate of mass from

differential control volume, this is = del u rho u/del x+del of rho v/del y+del of rho w/del z

dxdydz.
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If you have to satisfy the continuity, this must be balanced by the rate of increase or rather rate of

change in mass in the control volume. So a rate of change of mass of CV, this would be given by

del/del t of rho dxdydz and this must be negative of the efflux rate. So if you combine these 2

expressions, we simply get del of rho u/del x+del of rho v/del y+del of rho w/del z*dxdydz=-del

rho/del t dxdydz and thereby by rearrangement of the terms we get del rho/del t+del/del x of rho

u+del/del y of rho v+del/del z of rho w=0.

And this precisely the differential form of continuity equation which we had obtained earlier. So

this is another way in which we can obtain the differential form of continuity equation.
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The same exercise can be repeated for cylindrical polar coordinate system and this I would leave

as an exercise, the final equation as del rho/del t+1/rho del of rho r vr/del r+1/r del of rho v

theta/del theta+del of rho vz/del z=0 where vr, v theta and vz, these are the velocity components

in  r  theta  and z  directions  respectively. So please  take  a  small  differential  cylindrical  polar

control  volume and complete  this  derivation  following the steps which we used earlier  with

rectangular coordinate system.
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The next exercise would be derived continuity equation in spherical polar coordinate system.

Once again chose a small differential element in spherical polar coordinates. In both of these

polar coordinates,  please be aware of the changes in area across different r positions in new

derivations. That is where we are going to now put full stop to this lecture on continuity equation

and in the next lecture, we will take up the derivation of momentum equation.


