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Lecture - 38
SIMPLEC, SIMPLER and Fractional Step Methods

Welcome to the fourth lecture in module 8 on numerical solution of Navier Stokes equations. In

this module, we have been focusing on the numerical simulation of Navier Stokes equations. We

discussed its features and explicit and implicit time integration techniques in earlier lectures. We

had also discussed some implicit pressure correction methods and this lecture is a continuation of

this category of methods and we will also consider fractional step methods in this lecture.
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Before proceeding further, let us have a recap of what we did in the previous lecture. Our main

topic was implicit pressure correction methods based on implicit time integration schemes and

linearization  of non-linear  momentum equations.  We discussed one of  the most  widely used

algorithms of this family called simple algorithm. Now in this lecture, we would focus on the

improved versions of this simple algorithm.

We will take up only two of them, SIMPLEC and SIMPLER and we will look at a family of

methods called fractional step methods. So lecture outline, we will have a look at the SIMPLEC

and SIMPLER methods of the implicit pressure correction methods family.
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And then we will discuss fractional steps method. So now let us come to SIMPLEC method.

SIMPLEC  is  an  acronym.  We have  already  seen  what  SIMPLE  stands  for  and  SIMPLEC

precisely called simple consistent because there was a consistent approach to the treatment of vi

prime telda, which was ignored by Patankar's scheme SIMPLE and this was proposed by Van

Doormal and Raithby in 1984.

So what  Van  Doormal  and  Raithby proposed was  that  now let  us  approximate  the  velocity

correction term, which was omitted in SIMPLE and this approximation would be obtained by

using the simple emerging procedure and what they found is it leads to a much more consistent

method,  which converges  a  lot  more rapidly  and we do not  have to  worry about  the under

relaxation factors, which are required by simple algorithm.

So with the main attraction of this SIMPLEC process. Comparison was almost similar set of

steps are involved. So now let us derive the equations, which is slightly different from simple.

The basic process of course remains the same.
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That we would still  use the equations, which we derived earlier  for implicit based correction

methods and SIMPLEC is also based velocity and pressure connection concepts. So based on the

concept of velocity correction and pressure correction, which was introduced by Patankar that is

to say we would obtain the velocity field vim as some of where intermittent velocity field vim*

and the vim* remember we had obtained it using the linearized version of momentum equation.

Wherein  for  the  right  hand side  evaluations  we  have  used  values  of  the  velocity  field  and

pressure field at the previous equation. So that is how we had obtained this vim prime + a small

velocity correction, you would obtain it as a part of this solution process. Similarly, the pressure

field had the current equation is obtained as some of the pressure at the previous equation + a

small pressure correction.

And  as  I  mentioned  earlier  here  we  would  not  require  any  under  or  over  relaxation  for

improvement of the conversions. That is the beauty of this SIMPLEC method. Now what was

done  in  SIMPLE  scheme.  We can  do  the  same  thing.  So  substitution  of  these  momentum

equations.  So  substitution  of  above  equations  in  linearized  momentum  equation  gives  the

relation, which is basically a link between the velocity and pressure corrections.

It is the same equation, which we earlier derived for SIMPLE method and that is vip prime=vip

telda-1/apvi delta p prime/delta xi at p and let us continue the same numbering of equations for



sake of consistency, which we did earlier. So as continuation we will call this equation as 14.

This is our previous equation, which we had numbered as 9 and our vi prime p telda was defined

as -1/apl alvi prime.

So this was the previous equation, which we have written earlier for this telda variable. Now in

simple scheme we said vi prime telda, it is a weighted summation of vi prime at neighboring

nodes and these corrections we do not know, so we ignored it. So instead of ignoring it so let us

first try to get its approximation in terms of the neighbouring values. So now let us introduce that

approximation.

So let us assume that the velocity correction at central node or at computational node p can be

approximated by a weighted average of velocity corrections at neighbouring nodes. That is to say

what we claim that vi p prime, we can approximate it as a weighted average. The weight factors

are  our  coefficients  alvi,  which  we have  already  calculated  earlier. So  this  sigma l  alvi  vil

prime/sigma alvi. So that is what represents our weighted average.

And this is fair enough. We just want to find out correction term, which is fairly small and it is

reasonable to assume from the physics that it  would be linked or it  would be related to the

correction values at the neighbouring nodes. So let us call this equation as equation 14. Now if

we  combine  equations  9,  10  and  14,  in  fact  if  we  combine  10  and  14  in  terms  of  this

approximation.
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Using approximation 14 at v telda prime ip will be written as. Now if you substitute it in our

pressure linked equations from equation 9, what we will get that vip prime=-1/apvi sigma l. If I

transfer the terms multiply this by apvi and collect them together so we get apvi+sigma l alvi*vip

prime=-delta p prime/delta xi or in other words, the modified form for velocity corrections, we

get as -1/apvi+sigma l alvi delta p prime/delta xi at point p.

So this is the modified equations for velocity corrections, which is directly linked to the pressure

corrections. So now next task is to obtain an equation for the pressure correction and if I look at

this equation, what we can clearly realize is there is only one small difference with respect to

simple scheme that is denominator on the right hand side has changed in place of ap, we have got

an additional contribution coming from the coefficients linked to the neighboring terms and that

is what leads to a much better convergence behaviour of the SIMPLEC scheme.
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Now we have got the form for velocity corrections or what would the velocity v, so vim, which

we have written as vim*+vi prime substitute for vi prime, so this becomes vim*-1/apvi+sigma

alvi delta b/delta xi. Now this velocity filled must satisfy continuity equation, that is what our

condition is. We want to find out velocity filled at the current equation level, which would satisfy

continuity. So vim must satisfy the continuity equation. This is given as delta vim/delta xi=0.

So if you use this, from 17 and 18 what do we get. Left hand side of 17 now would become delta

vim/delta xi=delta vim*/delta xi-delta xi 1/apvi+sigma l alvi delta p prime/delta xi at p noting

that from continuity equation the left hand side becomes 0 and this gives us delta of delta xi

1/apvi+sigma l alvi delta p prime/delta xi at point p, so it would be =delta/delta xi of vim*. So

this is now the discrete Poisson equation for pressure correction.

So now we have got all the equations, which we need to obtain our solution. We have got our

linearized  momentum equation,  which are based on the  usage of  the values  of velocity  and

pressured field at  the previous  time equation and from there we can obtain our  intermittent

velocity field vim*. Now once vim* is available similarly our coefficient apvi and alvi, these

would also be based on the values at previous time step. They are also available.

So we can compute all of these. Use it in this discrete Poisson equation for pressure correction

and we can solve for p prime. One we know p prime, p prime is directly linked to the velocity



corrections v prime. We have derived the formula earlier for that, which was given by the v

prime was given by 1/apvi+sigma l alvi delta p prime/delta xi. So that formula directly gives us

the velocity correction.

At the velocity correction to the velocity vim* and that will give us the velocity field vim at the

current time level, which satisfies the continuity equation. At a pressure correction pm-1 to get

the pressure field at their current iteration in pm. We are done with as far the computations are at

present iteration or involved. So let us summarize our algorithm.
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And this  algorithm looks very, very similar except for a small  difference in the coefficients,

which are involved in the definition of velocity corrections and the pressure correction equation

compared to the simple algorithm. Computations involved are almost steps are identical. So the

first step is to use velocity and pressure at previous iteration level that is use vim-1 and pm-1 or

if we are at the first iteration use the values to previous time step.

Solve the linearized momentum equation to obtain the velocity field vim*. So that is the first

step. Next, once we know vim* find out its derivatives. Use it in SIMPLEC pressure correction

equations, I have put this word SIMPLEC to indicate it now. This equation is different from the

correction equation for our Poisson equation for pressure correction in simple algorithm. So let

us call it SIMPLEC pressure correction Poisson equation.



Solve this  equation  to  obtain  p prime and once we have got  p prime,  compute the velocity

correction vi prime, then update add this velocity correction to vim* to get the velocity field vim

and pressure pm. Next there was checking step. Check if velocity field vim and pressure field

pm, satisfy the momentum equation. If yes, we have now got converged velocity and pressure

field at the current time level.

So set this vim and pm as the values at time level n+1 and proceed to the comparisons at next

time level. If not, we have to repeat the iterations again. So we will increment iteration counter

and will be set to n+1. We will go back to step 1 and repeat the whole process until we have

obtained converged velocity and pressure field at the current time level tn+1.

Now  as  I  have  already  mentioned  earlier  that  in  SIMPLEC  algorithm,  we  introduced  an

improvement with reference to simple with no omission of any term that vi prime telda instead of

being  omitted,  it  was  approximated  consistently  in  terms  of  the  neighbouring  values.  So

SIMPLEC  converges  a  lot  better  than  simple  algorithm.  So  we  do  not  require  any  under

relaxation with SIMPLEC algorithm.

As far as computational requirements are concerned, they are almost identical and SIMPLE and

SIMPLEC, both the algorithms require almost same number of computations. So computation

time requirements are SIMPLE and SIMPLEC. They are both very similar.
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Next, let us have a brief look at algorithm, which was named SIMPLER. In fact, it is SIMPLER

is a shortened form of SIMPLE revised, which was proposed by Patankar. So SIMPLE revised

and  the  acronym  became  SIMPLER.  Now  here  the  Patankar’s  intention  was  let  us  do  the

computation for pressure correction in the same way as we did in SIMPLE, but this pressure

correction is used only to obtain the velocity corrections.

That is to say we have got linking equation and equation, which link the velocity corrections to

the pressure corrections. Use those pressure corrections in that equation to obtain our velocity

corrections,  but  do not add the pressure corrections  to pm-1 to obtain pm that  is  to say the

pressure at the current outer iteration. In this state, what we will do is that the new pressure field

is computed separated using Poisson equation for pressure.

In which corrected velocity filed is used. Remember we have derived this Poisson equation for

pressure in our original implicit pressure correction algorithm wherein the right hand side of this

pressure  Poisson equation  was  in  terms  of  vim* that  is  to  say  in  terms  of  the  intermediate

velocity field. In SIMPLER algorithm, what we do is, we already know what is the updated

velocity at the current outer iteration.

So  in  our  pressure  Poisson  equation,  instead  of  vim*  we  would  use  vim,  which  has  been

calculated already. Since it is available, let us use it and thereby obtain the pressure field pm. So



thus  one  important  addition,  which  has  been  made  to  SIMPLE  algorithm  and  it  leads  to

significant, very, very significant improvements in SIMPLE. So convergence is very good of the

simpler algorithm, but there is a drawback as well.

There is significant improvement in convergence of iterative solution process, but that comes at

the cost of this solution of an additional  Poisson equation.  In SIMPLE, we solved only one

Poisson equation that is a Poisson equation for pressure correction. In SIMPLER algorithm, we

have to solve for 2 Poisson equations, 1 is for pressure correction and the rest for the pressure

field itself.

So in nutshell what we will have to do in SIMPLE, we have to solve for 3 sets of linear equations

that is 1 each for each of the velocity components to give us vim* field, so we have to solve 3

systems of linear equations for velocity fields and 1 for the pressure correction.  In SIMPLE

algorithm, we will have to solve 5 such set of equations, 3 for velocity field and 1 each for

pressure and pressure correction.
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Now let us reiterate the algorithm. So here there would be an addition with respect to simple.

Few steps are common,  like the first  step is  common that  huge velocity  and pressure at  the

previous iteration level vim-1 and pm-1. To solve the linearized momentum equation to obtain



the intermediate velocity field vim*. Now compute or use this velocity of vim*, compute its

derivatives and solve the SIMPLE pressure correction equation.

Again, that we have to solve the same pressure correction equation, which we have obtained in

SIMPLE, which omitted vi telda primes so that term is still omitted. We would use the same

simplified equations for the pressure correction as well as for velocity corrections. So using the

same formulae as were used in simple algorithm, obtain the updated velocity field vim. Next

what do we do.

Use this vim now in pressure Poisson equation to solve pressure Poisson equation and obtain the

pressure  at  the  current  outer  iteration  pm by putting  this  additional  step,  now we have got

updated velocity field, which satisfied continuity equation and updated pressure field. Next our

checking step. Check if vim and pressure field pm satisfy momentum equations. If yes, we are

done with the computations at the current time level and we can proceed to the computations at

next time level.

If not, we would increment our iteration counter and go to step 1 and repeat the set of iteration

once again or this iteration process once again to obtain this solution. So as I remarked earlier

SIMPLER has got very good convergence behavior compared to simple. So in fact now it is

more  popular  to  use  SIMPLEC or  SIMPLER,  SIMPLEC is  computationally  more  efficient

because we have to compute only one pressure Poisson equation or we have to solve for only one

of them.

Otherwise their convergence behavior of SIMPLEC or SIMPLER algorithms are almost very

similar.
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Now we will move on to a next family of methods. There are many, many algorithms which have

been suggested in literature to solve incompressible Navier-Stokes equations. We have discussed

only few of them. We discussed explicit  time integration and implicated schemes. We would

have a look at yet another set of methods which are called fractional step methods. Now these

fractional step methods are essentially approximate factorizing methods.

This factorizing is fairly similar to what we had seen earlier in the case of ADI method. Say for

instance if you use explicit Euler method to integrate our momentum equation, then in that case,

the  discretized  momentum  equation  can  be  symbolically  represented  as  vin+1=vin+delta

t*Ci+Di*Pi evaluated using the values at time level n. Now here we have used these symbols C,

D, and P.

Now C represents the convective term, D represents the diffusive term, which is essentially the

terms, which come from our stress field and P represents the pressure gradient term. Now this

particular representation opens a way to a next class of methods.
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Instead of doing our computations in one step, we can break it down in 3-step method. So first

step what do we do. First step, let us use the value at the previous time level and only at the

contribution of the convective term. This will give us an intermediate velocity field, let us call it

as vi*. So vi*=vin+Ci delta t. In next step, we will add our diffusive term as well as define a new

intermediate velocity field, let us call it vi**. So vi**=vi*+Di delta t and finally we obtain the

velocity field at new time level n+1 as vin+1=vi**+Pi delta t.

Now this is only one way of breaking the things up. The advantages of this breaking up are not

that obvious in the context of explicit Euler method, but it would become a lot more apparent

when we use implicit scheme. One thing would still be common here with what we had seen

earlier with explicit integration that this Pi would be used only after we have solved our Poisson

equation of pressure to ensure the satisfaction of the continuity equation.

So before we proceed for this last step of this computations, we would have solved a pressure

Poisson equation using these velocity components vi**.
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Now what would be actual algorithmic form of a fractional step method that would depend on

our choice of discretizating procedure that to say whether we have used finite differences, finite

volume, finite element method and in finite difference or finite volume methods, what is our

computational molecule or computational stencil. How do you want to handle the convective and

diffusive terms and so on. So there are wide varieties of choices.

Similarly, it will also depend on our choice of the time integration schemes. Furthermore, we can

split the convective and diffusive terms into their components in respective coordinate directions

and this can facilitate our computations specifically when we use an implicit time integration

scheme wherein we have to solve a set of linear equations or linearized equations at each step. So

if you can break our diffusion and convective terms in respective coordinate directions.

And if  you use a  certain  type of  stencils,  it  is  possible  for  us  break each of  these  steps  in

fractional steps into system of fragment of equations, which can be solved very, very efficiently

and this many different type of splitting are possible, which lead to a wide variety of fractional

step methods. So try and look into the literature, you can find at least 100 variants and let us

discuss only one of these. We have already seen one based on explicit time integration.

Let us see one based on implicit time integration scheme and this would be based on a second

order accurate Crank-Nicolson method.
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The conceptual steps are, what we will first do is we will advance velocity using pressure from

previous step and we would obtain the resulting velocity v*. Now next step what we will do is

we would remove half of the old pressure gradient to obtain a new estimate v**. Next use this

v** to solve a pressure Poisson equation to get pressure at new time level and then obtain the

final velocity at new time level by adding the gradient of new pressure, which will ensure the

satisfaction of the continuity equation.

So now let us have a look at the equations, which are involved and this fractional step method

based on Crank-Nicolson scale. So let us get to our board to derive the appropriate equations.
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It  is  fractional  step  method  based  on  Crank-Nicolson  method.  Now this  is  for  the  sake  of

illustration purposes. This is only one way. The similar approach can be utilized to obtain a wide

variety of fractional step method as I have mentioned earlier. So our step 1 what do we do in step

1. We would use pressure at previous time level for advancement of velocity field and remember

the use of notation earlier.

The earlier notation which I have used was short hand notation, which have adopted for semi

discrete in Navier-Stokes equation. We can write this as del of rho vi/del t=hi-delta p/delta xi

where this hi represents contribution from convective and diffusive terms. So this was our initial

equation. Now we are using Crank-Nicolson scheme. So Crank-Nicolson scheme involves the

values at the new time level as well as the value the old time level and simple average of 2.

That is what the basis of Crank-Nicolson method. Pressure we do not know the new value, so we

will use only the old values here. So our step 1 becomes rho vi*-rho vin=delta t*1/2 hivi at n+hi

at vi*-delta t*delta pn/delta xi. Let us call this as equation 2. Now remember here, we have got

the terms in vi* on both the sides. So this would represent a system of equations, which have to

be solved to obtain this solution vi*.



In  step  2,  what  we  would  do  is,  we  would  remove  half  the  contribution,  which  we  have

incorporated in equation 2 from the previous time level.  So remove half  of the old pressure

gradient from vi* to obtain vi**.
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That is rho vi**=rho vi*+delta t/2 delta pn/delta xi. So this is our second step. Now final velocity

field is obtained by introducing the gradient of pressure field at tn+1, but that is still unknown.

So let us write down that in theoretical format, what we would like to do is just write that rho vi

at n+1=rho vi**-delta t/2 delta p at n+1/delta xi. Let us call this as equation 4. Before we can use

this formula to compute vin+1, we ought to know what is pn+1. So how do we do that.

For that, let us derive a pressure Poisson equation so vin+1 must satisfy the continuity equation.

Hence let us take divergence of 4, so what do we get, del/del xi of rho vin+1=del/del xi of rho

vi**-delta t/2 del/del xi of del pn+1/delta xi. LHS must be 0 because vin+1 must satisfy our

continuity equation, so let us rearrange and this will give us the discrete Poisson equation for

pressure that is del/del xi of delta pn+1/delta xi=2/delta t delta/delta xi rho vi**.

So this is Poisson equation for pressure at the time level n+1, rather pn+1. So now we have got

all the equations with us. So in fact our steps would be step 1, we have already seen that advance

the velocity field using the known pressure value that was the step 1. In step 2, we removed half



the old pressure value,  so thereby we obtained this  vi**.  Next we use this  vi** in  pressure

Poisson equation to solve for pn+1.

And then add its effect to vi** to get the velocity field at time level n+1, so that is whatever

actual fractional step algorithm. So these were the formal steps that is advance velocity using

pressure from the previous time step. We obtained the resulting velocity which we called v* and

then from this velocity field v*, we removed half the old pressure gradients to obtain a new

estimate v**. Now this was used in the derivation of the pressure Poisson equation.

Take divergence of this, use it as a source term in the pressure Poisson equation and solve the

pressure Poisson equation to get the pressure at new time level then, to obtain the final velocity

at new time level, we have to add the gradient of new pressure into v** and that completes our

solution process at the given time step. This way we would put a full stop to our discussions on

the fractional step methods.

There are quite a few other interesting algorithms for the integration of incompressible Navier-

Stokes  equations.  When  we  had  our  discussions  we  saw  that  the  conceptual  solution  of

compressible form is very simple, because we had the appropriate number of equations. Pressure

was obtained from the equation  of  this  state.  We had one equation  continuity  for  density, 3

momentum equations for the velocity components or the related fluxes rho u, rho v, and rho w,

then we had energy equation and we solved and we got our solution field.

Convey the similar thing, so the same type of technique, which is called artificial compressibility

method wherein the continuity equation is modified to incorporate the artificial compressibility

for incompressible flows and we can use a similar solution process such we had used in the case

of compressible flows. So that is the same time that we are solving incompressible Navier-Stokes

equations.
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So I  would  encourage  you  to  look  into  these  nice  books.  The  first  one  is  Anderson  Jerry,

Computational  Fluid  Dynamics  Basics  and  Applications.  This  book  deals  particularly  with

aerodynamic  application,  so  you  will  find  very  beautiful  discourse  on  very  simple  time

integration  schemes  for  compressible  flows  in  the  context  of  finite  difference  especially

discretizing schemes.

Chung’s book on Computational Fluid Dynamics that is the compendium of almost all known

schemes  till  2010.  It  has  got  discussions  on  solution  of  Navier-Stokes  equation  using  finite

differences, finite volume, finite element techniques and plethora of the time integration schemes

for both compressible as well as incompressible flows and their applications. So you can refer to

this book.

Ferziger  and  Peric’s  book  is  yet  another  one,  which  provides  a  very  nice  introduction  to

computational method for fluid dynamics and if you are interested only in finite volume method,

Versteeg and Malalasekara’s book gives you a very good introduction to the application of finite

volume method in solution of CFD specifically in solution of Navier-Stokes equations and the

solution of advection and diffusion problems.



So with timing, we would stop as far this course is concerned in connection with Navier-Stokes

equations. In the next module, we will take up application of what we have learnt so far for

solution of turbulent flows.


