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Lecture - 37
Implicit Pressure Correction Methods 

Welcome to the third lecture in module 8 on Numerical Solution of Navier-Stokes Equations. In

this  module  we  have  already  discussed  the  basic  features  of  Navier-Stokes  Equations.  We

discussed  explicit  and  implicit  time  integration  algorithms.  And  today  we  would  focus  on

implicit  pressure correction methods.  And in the next lecture we will  take up fractional  step

methods. Before we proceed further let us have a recapitulation of what we discussed in the

previous lecture.

(Refer Slide Time: 00:55)

We briefly discussed the numerical simulation of compressible flows. And then we took up the

algorithms  of  numerical  simulation  of  incompressible  flows.  We had a  look at  explicit  time

integration methodology and implicit  time integration methodology wherein we saw that  we

have to solve a very large system of coupled nonlinear equations in case we use an implicit time

integration technique.

Implicit time integration techniques are required if you want to solve slow transient or steady

state problems. So is there a way out in which we can avoid solving a very large system of



coupled  nonlinear  equations  accurately.  So  implicit  pressure  correction  methods  which  we

discussed in this lecture provide an answer wherein we would develop an iterative technique to

solve the coupled nonlinear system of equations.

(Refer Slide Time: 01:59)

So we will first discuss very briefly the basic feature of what we call implicit pressure correction

methods.  And then we will  take up few popular  algorithms of this  category  in  particular  in

SIMPLE,  SIMPLEC  and  SIMPLER.  If  time  permit,  we  will  also  take  up  Fractional  Step

Methods or else we will take this topic up in the next lecture.
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Now this  Implicit  Pressure Correction  methods they  are primarily  used for  steady and flow

transient flows. And once again the basic process is very similar to what we discussed earlier in

the case of explicit time integration techniques, that to say we would first find out a velocity field

which does not satisfy the continuity equation then we will solve a Poisson equation for pressure

and incorporate a correction term which will enforce a continuity thereby obtaining a velocity

field which is divergence free. 

So implicit pressure correction method follow same procedure and they belong to the general

clause of method which we call projection methods wherein the first project of velocity to get an

intermediate velocity field which does not satisfy continuity and corrected using pressure like

tau. And we will employ an implicit time integration like explicit time integration techniques

along with a pressure and or a pressure correction equation to enforce mass continuity. 

We will first discuss a scheme which basis the corrections on the pressure equation and then we

will  take  up  simple  algorithm  which  is  based  on  the  pressure  correction.  Use  a  pressure

correction to enforce the continuity equation and simpler algorithm which would involve both

pressure and pressure correction solution.  Now in the last  lecture we had written or we had

obtained the discrete momentum equation which we would obtain from spatial discretization, in

fact it was a semi-discrete equation in time. 
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And when we applied an implicit time integration such as Backward Euler we got a system of

nonlinear equation. Now that nonlinear momentum equation that can be written in a quasi-linear

form as Ap Vi Vi,p n+1+Sigma l, Al vi Vi subscript, l n+1=Qvi n+1-delta pn+1/ delta xi p, but

this delta p/del xi this represents the discretization for the pressure term. 

Now here the p is the index of an arbitrary velocity node at a given computational node, l or the

indexes of neighboring nodes which contribute to that momentum equation and I could take

values from 1 to 3 corresponding to 3 momentum equations. Now remember here this Q terms

and as they will depend on the unknown velocity field. One more thing we have been using is

comma notation we have used earlier to denote differentiation but at not in this equation. 

Here i,p that only say that we are dealing with the ith component of velocity or ith momentum

equation and capital P subscript that denotes a particular computational node. Similarly, i,l this

comma  again  does  not  denote  differentiation  simply  says  that  we  are  looking  at  the  ith

momentum equation for the neighboring node l , so here comma does not denote differentiation.

Now the source term Q and coefficients A depend on unknown solution Vn+1; so we can diverge

an iterative scheme we have to work or we have to use the values which are known till now. 

(Refer Slide Time: 06:16)

Now these discretized momentum equations they represent a set of coupled nonlinear equation

because we have three such equations for each value of i and we have to solve these equations



iteratively. And in case if you are looking for accurate time history what we will have to do is we

have to continue the iteration at each time step for this nonlinear system to specified tolerance.

Now in this context what do we do, at each time step we have to solve our nonlinear system and

usually we are dealing with a very large system of linear equations or what we call linearized

equations, so we would use two sets of iterations one is what we call outer iterations and other

set of iteration where refer to as inner iterations. So let us clarify these terms.

(Refer Slide Time: 07:08)

The outer iterations are the ones the iterations at each time step in which our coefficients A and

the source term Q are updated based on the velocity field and the pressure field computed at the

previous iterations. So these iterations wherein these coefficients A and Q are updated they are

called outer iterations. Now what are Inner iterations? Iterations for solution of linear systems

with fixed coefficients A are called inner iterations. 

Now  these  inner  iterations  are  required  in  this  solution  of  a  velocity  field  from linearized

equations or we would also use very often an iterative solution procedure to solve the pressure

Poisson equation. So these equations are required which are involved in the solution of the linear

algebraic equations for velocity field and the pressure field these would be referred to as our

inner iterations. Now let us derive the algorithm before we look at the summary of this particular

scheme. 
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Okay so let us rewrite our discretized momentum equation. Discretized and also quasi-linear for

so  we have  this  ApVi Vi,p  n+1+sigma l  Al  Vi Vi,l  n+1=QVi n+1-delta  pn+1 over  delta  xi

computational node p, let us call this equation as 1. So we will have a set of three such coupled

equations and in this quasi-linear form we have taken one precaution that is to say we will put all

the terms on the left hand side for a particular velocity component (()) (10:20) = 1 rest of them

they would be put together in this term QVi. 

So this QVi n+1 contains all the terms which are evaluated using previous values—which may

be evaluated using values at previous time step that is our known values that is Vi at m any, body

force term and linearized velocity terms or linearized terms which me may contain in fact they

would (()) (11:43) contain that it unknown velocity term that is the reason here we have used the

superscript n+1 to denote that even this Q term which is sort of our load term for a linearized

system. 

That also depends on 8 unknown values.  Now to start  off with iteration process we want to

diverge an iterative solution scheme and let us symbol m to denote our outer iteration, so let m

denote the counter for outer iterations. So what we will try to do is that at each iteration we will

have to solve this linearized system using values which are already available that is which have

been evaluated at the current iteration which are available to us. 



So at each outer iteration we have to solve linearized equation 1 using values of A, Q and P okay

obtained at previous iteration or if we at the very first iteration we will say at previous time step.

So the start of the outer equations our known values are the values at time t=tn, so those would

be used as our initial guess for the field values at the new time step. And we would solve for an

intermediate velocity field. 

Since on the right hand side we are using the terms which are based on the previous iteration and

if we substitute those (()) (14:29) equation they will not satisfy the momentum equation 1 and the

velocity field which we obtained thereby that will not satisfy the continuity equation either. So

this, what do we do, that would solve for or thus, we do not try to immediately obtain an estimate

of the velocity field at the current iteration which will satisfy continuity.

We would rather obtain a velocity field estimate which does not satisfy continuity and we would

enforce the continuity later on. 
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So thus we obtained an intermediate value for velocity field V i m let us denoted by Vi m* which

is the solution of ApVi Vi,p m*+sigma l AlVi Vi,l m* in equation 1 we have just substituted m*

in place of superscript n+1 QVi m-1-delta p m-1 over delta xi at p. So let us call this equation as



2. In fact, this represents not a single equation it represents a system of equations which have to

solved and if you can solve the previous system we can get our intermediate velocity field Vi m*.

And let us implicit this point that intermediate velocity field Vi m* will not satisfy the continuity.

Okay, now what do we do to enforce the continuity lets rewrite this equation slightly and that

would give us an equation which we can use as your starting point to obtain a corrected velocity

value which would satisfy the continuity equation. So let us rewrite the equation 2, let us keep

only Vi, p m* in one side so Vi,p m*=1 over ApVi (Qvi m-1-sigma l Al Vi Vi, l m*-1 over Apvi

delta p m-1 over delta xi at p. Let us call this equation as equation 3. 

This equation will not actually be used to compute anything this is just an intermediate step in

our derivation process. And let us introduce (()) (19:31) the modified velocity field. So let us

introduce velocity field defined as, we will call  it  Vip m* delta and in fact this is shorthand

notation for the first term on the right hand side of the equation 3, this is 1 over Apvi Qvi m-1-

sigma l AlVi Vi,l m*. 

Let  us call  this  definition  as our equation  4.  So in  terms of this  modified  field  so thus our

equation 3 can be rewritten as, let us go to the next.
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So Vi,p m* is given by Vi,p m* ~ -1 over ApVi delta p over delta xi m-1 at point p. Now it is not

this equation per se very important. What is important in the development of algorithm is the

form of this equation; let us call this equation as 4a. Now what this equation suggests is that if

we had the pressure value at the current instant that could be used in this equation and if you

could have used that we should be able to obtain a corrected value for the velocity field that is

the velocity field at the current iteration. 

So this form of equation 4a suggest that velocity field at current iteration can be obtained from

Vi,p m, now we dropped—there is no more the intermediate velocity, what we are claiming that

this would be our continuity satisfying velocity field at the current outer iteration m, so Vi,p m*~

-1 over ApVi delta p over delta xi m. Now here the pressure is no more the known pressure. 

In fact, this is an unknown pressure value at the current iteration which we have got to find out.

Okay, the first term is known because we can obtained Vi m* from the solution of our linearized

system. So first term is known. Now let us enforce the continuity. So this Vi m must satisfy our

continuity  equation  that  is  delta  Vi  m  over  delta  xi=0,  remember  we  are  dealing  with

incompressible flows, hence let us take divergences of our equation 5, so what do we get?

The first term, delta Vi,p m over delta xi delta over delta xi of Vi m* at point p-delta over delta xi

of  1  over  ApVi delta  P m over  delta  xi  first  term should be zero  because  Vi m satisfy  the

continuity equation. So this leads to our discrete pressure Poisson equation delta over delta xi of

1/ApVi delta P m over delta xi computational node so p=delta over delta xi Vi m*.
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So this is our pressure Poisson equation; this is Discrete Poisson Equation for pressure pm. Let

us call this equation 7. So now let us have look at the summary of the equation which we have

got. We had linearized momentum equation, equation 2 which was for the intermediate velocity

field Vi m* so we can solve that equation using values of the velocity at the previous iteration

and the pressure at previous iteration. 

So Vi m* is known. Next we could not solve for our discrete Poisson equation for pm and now

this pm can be used in conjunction with Vi m* to obtain the velocity field at the current iteration

which would satisfy our continuity equation. Okay. So now let us summarize these steps and put

this algorithm formal terms. 
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So let us-- using velocity and pressure at previous iteration level that is Vi m-1 and p m-1 or

previous time step m=1 solve the linearized momentum equations to obtain Vi m*. And once this

Vi m* is known, okay. Now we will compute the modified velocity field Vi m*~ find out its

derivatives because that is what could be used in our pressure Poisson equation. Okay. And once

that is known then we can compute the corrected velocity field Vi m which would satisfy the

continuity equation. 

Next step what would be to check if our velocity field Vi m and pressure field pm they satisfy

momentum equation to the specified tolerance. If the answer is Yes, then we will say this Vi m

and  pm  now  represent  the  values  of  the  current  time  step  and  we  will  proceed  for  the

computational at next time step, if not we will reset this iteration counter as a m=m+1 and then

go back to step 1. 

So this is a nutshell our implicit pressure correction method based on an implicit time integration

scheme and a linearization procedure. 
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Now there  are  many  variants  of  this  implicit  pressure  correction  method  which  have  been

proposed in the CFD literature. The some variants which suggests that we can use the values of

the previous iteration level and we just need to add small correction to get the corrected velocity

values  that  is  to  say  that  velocity  field  computed  from linearized  momentum  equation  and

pressure pm-1 can be taken a provisional values to which small corrections must be added to

obtain the final values for the current outer iteration. 

That is Vi m could be obtained as Vi m* + a small correction Vi prime and similarly, pm=m-1

plus  a  small  correction  p  prime.  We will  have  a  look  at  one  such method  which  is  called

SIMPLE. 
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This was the first algorithm, its names was given as SIMPLE by Patankar and Spalding in 1972

and SIMPLE is essentially  is an acronym that is Semi-Implicit  Method For Pressure Linked

Equations.  So each first  letter  of each of these words that  is  involved in this  different word

SIMPLE. Okay. And there are various improvements of SIMPLE such as SIMPLER, SIMPLEC,

and PISO; they have been put forth in literature. 

For the details, please see the books by Ferziger and Peric and Versteeg and Malalasekera. In this

lecture we have got time only to discuss simple and in next lecture we will take up SIMPLEC

and SIMPLER schemes.  So now let  us  have a  look at  equations  which  are involved in  the

SIMPLE algorithm. So let us get back to a board. 
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This algorithm is based on what we have discussed earlier for our implicit pressure correction

method. So many of the pressure corrections which are derived they would be used as such, the

kirks is that we want to represent our corrected velocity Vi m as Vi m* plus small correction

added Vi prime and similarly for pressure at pm is obtained by pm-1+ small correction p prime. 

So let us continue the same numbering scheme let us call it as equation 8. Now if we substitute

these equations, so substitution of 8 in linearized momentum equation which have obtained for

Vi m* gives the following a relation between velocity and pressure corrections. So this relation is

Vi p prime this is equal to Vi,p ~ prime-1 over ApVi delta p prime over delta xi.p this is got a

form very similar to the relation which we have written for Vi m* so here again this Vi p prime

~=-1/Ap sigma l AlVi Vi,l prime. Okay, now let us call this as 10. 

Now, what would be our-- if we substitute 9 and 8 our corrected velocity field is given by Vi

m=Vi m*+Vi p ~ -1 over ApVi delta p prime over delta xi at p. Now this must satisfy your

continuity equation. So satisfaction of continuity equation requires delta Vi m over delta xi=0. 
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And this leads to delta over delta xi of Vi m*+delta Vi, p prime ~ over delta xi p-delta over delta

xi 1 over ApVi delta p prime over delta xi at p. 

So if you look carefully, this equation is a discrete Poisson equation for the pressure correction p

prime. The first term on the left hand side that is known as because Vi m* that would have been

obtained from the solution  of  linearized  momentum equation.  But  this  Vi p ~ prime that  is

unknown, we still do not know what our velocity corrections are. So what do we do then? One of

the options which Patankar says that this Vi p ~ prime is unknown. 

So as your first approximation,  so let us ignore it.  So if ignore it then what happens? Then,

equation 11 becomes delta over delta xi of 1 over ApVi, delta p prime over delta xi at p=delta Vi

m* delta xi at p. So this is Poisson equation for pressure correction. And similarly, if we implicit

this Vi ~ to 0 so equation 9 becomes our velocity correction equation becomes at Vi p prime-1

over ApVi delta p prime over delta xi p. So let us call this equation is 13. 

So  now  we  have  got  an  algorithm  wherein  what  we  need  to  do  is  first  let  us  obtain  the

intermediate velocity field Vi m prime, use that to obtain a pressure Poisson equation-- solve this

pressure Poisson equation to get p prime; once we have this pressure correction field we get this

velocity corrections, add it to the velocity value we get the velocity field; add it to the previous

pressure value we will get updated pressure value.



So now here we have got one problem here let us note down that the central  approximation

which we have made or the main approximation, approximation of SIMPLE algorithm that is we

have set this Vi prime ~ to 0. Okay. Now let us have a look, let us formularize the steps in an

algorithm form. So the first step is very similar to what we have seen earlier that use velocity in

pressure at previous iteration level or previous time step to solve for Vi m prime. 

Compute its derivatives and solve the Poisson equation of pressure correction p prime. Then

compute the velocity correction Vi prime. Updated velocity field Vi m and pressure pm then

check for the convergences whether the fields Vi m and pressure field pm satisfy momentum

equation, if Yes terminate the iterations for the current time level to go next time level or else

increment  the  iteration  current  counter  and go  to  step  1  and  repeat  the  SIMPLE algorithm

iterations. 

Now we have ignored one term which was not known and that leads to a slow convergences of

SIMPLE iterations. 
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So  what  Patankar  noted  is  to  improve  the  convergences  we  must  use  under-relaxation  for

pressure and velocity correction. We will not add the total value of p prime and V prime which

we calculate we would instead weight them by small factor and that factor would be < 1, so pm



would be given as pm-1+alpha p times p prime where alpha p is < 1, similarly, Vi m is Vi m is

m*+alpha Vi prime.

So in theory we can have different under-relaxation factors alpha V for each of the velocity

components,  but normally  we take the same values.  The values which are recommended by

Patankar they are 0.8 and 0.5, 0.8 for the pressure correction and 0.5 for the velocity correction.

(())  (42:03)  the recommendation  is  we let  choose our  velocity  correction  or  velocity  under-

relaxation factor alpha p. And alpha p is chosen to be 1-alpha v. 

So  these  are  two recommended  set  of  values  which  help  in  improving the  convergences  of

SIMPLE  algorithm.  For  further  details,  you  can  look  at  these  books  by  Anderson,  Chung.

Ferziger and Versteeg and Malalasekar. So in this lecture we will stop here. In the next lecture,

we will have a look at the improved version of SIMPLE algorithm. And we will also take up

fractional step methods.


