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Lecture - 36
Time Integration Techniques for Navier-Stokes Equations

Welcome to the second lecture in module 8 on Numerical Solution of Navier-Stokes Equations. 

(Refer Slide Time: 00:32)

In the previous lecture we had discussed the features of Navier-Stokes equations and we also

discussed some important points which we need to keep in mind in steady state compressible as

well as incompressible Navier-Stokes equations. We will next discussion application of explicit

and implicit time integration schemes for Navier-Stokes equation. And then we would look at

one familiar methods which are called implicit pressure correction methods which are widely

used for solution of steady state problems.

And we will also have a brief look at familiar method called Fractional Step methods. Let us

have a recap of what we discussed in the previous lecture.
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We discussed the special features of Navier-Stokes Equations then, Vector equations, it has got

special properties we have got flexibility with respect to the choice of the grid and (()) (01:27)

that is what we discussed at previous lecture. We also discussed the mix nature and due to that

would or the implications that we would rarely have a, a steady state solution, we would rather

try to obtain a steady state solution as an end result of and time dependent simulation. 

And we briefly discussed these special  things which are involved in numerical simulation of

incompressible flows. In particular, that this no independent equation for pressure so we must

find  out  or  we  must  derive  a  Poisson  for  pressure  which  would  ensure  the  satisfaction  of

continuity. 

We also had a brief look at numerical simulation of compressible flows and we have had brief

conceptual outline as to how we can solve compressible flow problems and what we saw that

conceptually this simulation of compressible flows is appears to be lot simpler because here we

have got independent equation for each variable; we have got continuity equation with represent

transport equation for density. 

A momentum equation has transport equation for velocity components. And energy equation as

transport equation for temperature or total energy and we have got equation state to supply just

the  relationship  between  pressure,  density  and  temperature  so  from  which  we  can  obtain



pressure. And similarly, we have got certain constitutive equations which give us the material

properties in terms of the flow variables. 

So since everything is available which we require for the compressible flow, all the equations

available and we to just have to use a proper set of discretization techniques in special  time to

obtain our numerical solution. So this stoke and (()) (03:19) compressible flows where we have

to contrive, we contrive to derive an equation for pressure using both momentum and continuity

equations. 

Now in this lecture we would focus primarily on a time integration techniques for Navier-Stokes

equations.  We would  not  discuss  in  detail  about  this  special  discretized  in  use.  So  we will

presume our starting point would be what we call the Semi-discrete system equations wherein we

have  applied  our  favorite  special  discretization  scheme  it  could  be  finite  differences  finite

volume or finite element method and we have obtained a discrete algebraic in terms of time. And

how do we integrate that equation that would be the feature of focus of the lecture today.
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So outline, we will have brief look at Numerical Simulation of Compressible Flows. We will

have a look at one particular type of explicit integration scheme for compressible flows. And

since it is a introductory course we would not going to any further detail about the compressible



flows and we would refer to appropriate references wherein you can find detailed algorithms for

dealing with low speed as well as high speed compressible flows. 

We will focus mainly on the numerical simulation of incompressible flows and we will have a

look at,  Explicit  Time Integration procedure then an Implicit  Time Integration procedure and

Fractional Step methods. So well, let us first have a look at numerical simulation of compressible

flows.
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We had a look at the conceptual procedure in the last lecture, that is to say what we have to (())

(05:11) continuity momentum the energy equation they represent, transport equations of density,

free velocity components and the total  energy. So can we combine this into a generic vector

transport equation, so this what we will have a brief look at. So we will combine this and next

this generic vector transport equation can be discretized using our choice of special discretized

scheme.

And then we can also apply a suitable discretized scheme in time to solve the flow variables

making  use  of  the  suitable  equation  of  the  state  to  take  you to  the  pressure  in  momentum

equation. And we would see that primitive variables which are velocity components density and

temperature they are obtained from our generic solution vector in this equation. And we will



have one demonstration of this solution process based on an explicit scheme which is popularly

refer to as MacCormack method which is essentially a predictor corrected method. 

So now let us switch over to about and have a look at the Simulation of Compressible Flow. 
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We would focus only on Navier-Stokes equations, they are very simplified cases in compressible

flow, for instance for very high speed flows, the affect of its (()) (07:13) negligible except close

to the boundaries in that case we might solve for Euler’s equation or if you are too far off and

flow is ir-rotational we can as well solve for the potential equation. So we are not going to deal

with those equations. 

We will focus primarily on the most general case wherein the viscous affect already involved

because of the present of boundaries and this  is what we would focus on our Navier-Stokes

equations. So now let us first write down equations the way we have learnt them that we have

derived them earlier. So first is Continuity Equation, let us use Cartesian Tensor notation. So this

is del rho/del b+del over xj of rho vj = 0. 

A momentum equation, del of rho Vi over del t+del over del xj of rho Vi Vj-del p over del xi+del

tau i,j over del xj, and suppose we ignore this source term or body force term which could be

combined with the pressure if you want to or let us neglect for the time being. Similarly, we can



try to Energy equation, wherein we would write the equation for total energy that is E= a internal

energy + the kinetic energy = our heat generation term, moisture diffusion term pVi, j, tau ij vj,

the last 2 terms they come because of what we call flow work Q is our heat (()) (10:19). Now

these 3 equations are in terms of what we call one variable is our density the next variable is the

3 components velocity so 4+a total energy 5, and we have got pressure 6. 

So we have to supply a separate equation of pressure, so for pressure we would have equation of

a state say B=Euler equation of state in some situation so p = rho RT and T could be obtained

from our total energy E, if you know capital E velocity and density which should be able to

calculate p and give that p in the solution of momentum equation and so on. Now let us define a

new solution vector. So let us define a vector of flow variables. 

Now this would be—we are going let us use symbol capital U for this. This will contain the

primary unknown and each of these equations. 
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So primary unknowns and are let us say density for continuity equation, momentum equation we

have got less use Cartesian component so rho U, rho V and rho W as similarly the last equation

we have got rho capital E. Please be careful here, we have not used U, V, W and E we have

instead used the combination of rho U, rho V, rho W and rho E. 



And getting the primitives variables U, V and E would be easier once we get the components, so

the  solutions  at  primitive  variables  would  be  obtained  as  like  U  that  would  be  the  second

component vector U so let us called as U2/rho, the rho is U1 V=YU3/rho and W=U4/rho and

capital E would be U5/Rho. So its capital U is a vector, it is got 5 components. And in terms of E

we can collect all these equations together. 

So equations 1, 2 and 3 can be combined together into a single vector transport equation for the

flow variable vector capital U. We can write as del of U over del t+del of Fi over del xi+del of Gi

over del xi= a vector b. One of this f and j they would the del u/del t that contains the collection

of our time, derivatives terms f will contain the convective terms, so this is time derivatives

terms, convective terms and diffusive terms. 

This  will  contain  all  generation  terms,  generation  or  body  force,  source  terms.  For  actual

numerical  implementation  what  we  can  do is  instead  of  writing  in  generic  form let  us  use

Cartesian coordinate system and in Cartesian coordinate system we can correct or rearrange the

terms that will definitely-- 
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So for numerical implementation in Cartesian Coordinates, let us rearrange. We will keep the

derivatives of x, y and z separately, the above equation in terms of derivatives of x, y, z and t and



rewrite it has del of U/del t+del A over del x+del B over del y+del C over del Z=0. So let us call

this equation as a equation number 5. 

Now here we can again rewrite in terms of ODE to enable us to apply the time integration

scheme, so we can put it as del u/del t-del A over del x+del B over del y. Now we can use a

suitable time integration scheme and a discretization procedure to solve this equation, okay. So in

the context of finite differences, so let us choose our discretization procedure. Let us call it a

finite difference for spatial derivatives and explicit time marching scheme. 

So you can use one such thing and one such a scheme is what we call MacCormack method.

Now this MacCormack method it is a predictor corrected method. So what do you do-- in first

step of this method the predictor step we would use this solution which is available at time T=t

and that is the known time to obtain a predictor value for the variable, or our solution vector

capital U.

Use  this  predictor  value  again  to  update,  let  us  say  our  material  properties  as  a  terms  and

thereafter thereby get a final solution which as an average of the predictor solution as well the

initial guess or initial solution at time t=t. So here, the first step is our predictor step. Okay. 
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To compute an estimate of flow vector U using forward Euler method, so once we apply forward

Euler method this straightway get our capital U at—U * this at the grid point i, j, k basically U at

i, j, k at time level n-delta t times. Now we can—we have to use the spatial derivatives for A, B

and C. So let us substitute let use differences for A, B, C. 

So A become Ai+1, j, k-Ai, jk, this H vector-- H would be evaluated using this solution at time

level n/delta x. Similarly, Bi, j, k+1k-Bi,j,k evaluated at time level n/delta y+Ci, j, k at an k+1-

Ci,j,k/delta Z. So these are our predictor value. Now with this predictor value we would use in

the corrected step. So all these A, Bs and Cs there component would be computed using this

value U* and solution would be obtained as a simple average of an Euler step value plus this

predicted value. 

So U at n+1i, j, k this would be given as an average of this 2 so 1/2 of U* i, j, k which we

computed at the previous step. And if we use this U* i,j,k for the evaluation of A, B, Cs and start

off within initial condition at t=tn that is our Un so we get U at n i,j,k-delta t times A* i+1j,k, A*

i,j,k/delta x B* i,j+1k-B i,j,k*/delta y+C* i,j,k+1-C i,j,k*/delta Z. So now we have obtained our

solution vector at the new time step and grid point i, j, k using an explicit scheme. And remember

that this A*, B* and C* they are the ones.
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So this start values A* B* C* have been evaluated using U*. Now remember this MacCormack

scheme is an explicit scheme so (()) (26:35) stability constant and I would refer you to the books

by  Anderson,  J.D (1995)  and Chung,  T.J  (2010),  these  2  books  the  complete  reference  are

provided at the end of the lecture for further details. So we are not going to discuss any further

about  a  compressible  flows.  We will  not  focus  on  the  incompressible  flow time  integration

scheme. 

(Refer Slide Time: 27:24)

Now let us have a look at numerical simulation of incompressible flows. We have already seen

that is in this case we need to derive a Pressure Poisson Equation for the continuity. We can make

use of an explicit time integration scheme; we can go for implicit time integration or we can use

category of method feature called fractional steps methods. So these are the 3 which we are

going to discuss in today’s lecture. 

And this (()) (27:52) category methods which is called the Implicit Correction methods which we

would discuss in the next lecture. Now let us have a look at the characteristic of explicit time

integration. Now if you try and implement them this Navier-Stoke solvers based on explicit time

integration techniques they are simplest  to implement because we can straightway obtain the

values of the flow variables in terms of the values of the preceding (()) (28:21) time; that is what

we saw in the case of our MacCormack method for compressible flow. 



Same  way  here  is  the  velocity  components  could  be  directly  obtained  from or  momentum

equations in terms of the values at the previous time step. Okay. But there is one problem here

that explicit time integration techniques, they have got severe stability constraints and that puts

that imposes limitations on the time step which we can choose. 

So explicit time integration schemes are recommended or they are primarily used for the flow

problems in which the accuracy requirements demand use of a very small time steps. So such

would be the situations wherein in for instance we want the flow transient something is happened

suddenly all of the sudden there is some disturbance flow field and you want to catch those flow

transients. 

Or if you want to perform a large simulation or direct numerical simulation turbulent flows in

each of these cases we require a very accurate time history and for this accurate time history we

should choose very small  time steps.  And this  time step maybe small  enough to satisfy the

stability conditions, so these are the 3 prime candidates in which we should prefer explicit time

integration scheme that is the problems involved in flow transients and Large Eddy Simulation

and Direct Numerical Simulation for turbulent flows.

Now let us see how do we obtain or how does this explicit time integration scheme works, let us

have schematic, the algorithm and then we would summarize it. So let us back to a board.
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So Explicit  Naiver-Stokes  Solvers.  And remember  we are  dealing  with  only  incompressible

flows. So, here most of the time you would be solving only the momentum equation not the

energy equation; continuity equation would be used only (()) (30:46) constant, so our primary

focus would be on the solution of momentum equations. 

So let us write a momentum equations del of rho Vi over del t+del over del xj of rho Vi Vj–del p

over del xi+del tau i,j over del xj. For the time being let us ignore the source terms if they present

they could always be combine together with the pressure. Now we would like to apply spatial

discretization techniques and let us write the discretized equation. 

So application of spatial discretization techniques which could be finite difference, finite volume

or finite element that does not really a matter that will lead to a semi-discrete that would be

discrete in the space but still contains in time, semi-discrete system given by rho Vi over del t=-

delta over delta xj rho Vi Vj-delta p over delta xi+delta over delta xj of tau i,j. 

Now  here  we  have  introduced  this  operator  delta  so  operator  del/del  xi  represents  spatial

discretization  operator  and  it  could  be  different  for  each  term  that  is  for  convective  term,

convective, diffusive and precautive. So what we would normally do is we would use central

differencing if you are dealing with finite difference of finite volume taken x central differencing

would be used for the pressure term and diffusive terms that is our system term. 



And we would use some sort of an up winding scheme for the convective term. Okay, so this was

a convective term, pressure term and this is a diffusive term. Now further for sake of notational

convenience we are going to introduce attain the short term notation. So let represent by Hi, Hi

contains both our convective as well diffusive terms. 
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So then we can rewrite to as del of rho Vi over del t= sorry this is del tau xi. This can be written

as del Hi over del xi, so this is same as discrete equation in terms of time. Suppose we want to

use an explicit scheme the simplest one would be our Explicit Euler method. So use Explicit

Euler method for time integration of 4. Then what we will get, we will get rho Vi at time instance

n+1=rho Vi at time n+delta t times del Hi at n/del xi-delta pn over del xi. 

Now in this equation we have only one problem, Hi which contains our convective term and

diffusive term taken together that is explicitly known in terms of the flow variables at time level

t=tn. But same thing we cannot say about pressure this pn would usually be unknown. Now the

velocity field which we have calculated that must satisfy continuity equation, so this Vi+n+1

must satisfy continuity equation, so let us take divergences of equation 5. 

So what do we get, del over del xi of rho Vi n+1 del over del xi of rho Vi at n delta t times del

over del xi of del Hi n over del xi, so Hi we will have here, let Hi-del over del xi of del pn over



del xi. Now remember we have to satisfy the continuity equation. The velocity field must satisfy

the time tn+1 so that the first term, the term one LHS must vanished. 

The velocity field which was available there at time t=tn that would also satisfy our continuity

equation so this term also vanished, so these 2 terms vanished for continuity. So thereafter, what

we are left with is del over del of xi delta pn over delta xi=del Hi over del xi. So this is what is

our pressure Poisson equation. So now we have got all the tools which we require for explicit

time integration. If you wanted to use the formula given by this equation 5. 

In equation 5, to obtain the value at time level n+1 we needed the evaluation of Hi and this del

pn over del xi. Hi can be computed in terms of the values at time level n and pn can be computed

by solution of a pressure Poisson equation. So steps are clear now. First let us see evaluate this

Hi then obtain numerical divergence of Hi use that as a source term for the pressure Poisson

equation, solve for the pressure Poisson equation, obtain the pressure field, take its gradient and

use it in our explicit formula for the velocity components to get our flow field. 

Now let us summarize these steps. 
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Starting with the velocity field vn at time tn,  compute Hn which contains the advective and

viscous terms of the momentum equation and find out its divergences that we need as a source



term of the pressure Poisson equation. The next is, solve the pressure Poisson equation to obtain

pn and once we know pn then we know this explicit  formula in which we substitute for del

pn/del xi and H at n and that gives us the velocity field at time level tn+1.

Now we have demonstrated this explicit integration with Forward Euler scheme. Now process

would be almost same, if you want to use a higher order schemes such as Adams-Bashforth or

Runge Kutta methods. 
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Now the advantage of the explicit  schemes is obvious a very simple implement,  the velocity

component  evaluation  requires  just  straightforward  algebraic  formula.  So  velocity  field  is

obtained explicitly in terms of values at previous time steps provided we know the pressure-- we

have to solve only one system linear equation which results from pressure Poisson equation. So

the implementation of this explicit solver is pretty straightforward.

And remember here, the only system of equation which we have to solve that is your pressure

Poisson equation so that is that makes this step as the most demanding step in explicit Navier-

Stokes solver. And because of this reason the solution of pressure Poisson equation is still one of

the most challenging research area at the moment. People trying to develop fast and faster, what

typically called fast, Poisson solvers which can be used for large scale flow simulations. 
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A disadvantage is that we need to have very small time step that is mandatory by the stability

requirements.  So  these  methods  are  unsuitable  for  steady  state  or  slow  transient  problems

wherein large time steps would be preferred to reach the steady state very quickly. And for this,

steady state problems or the slow transient problems we would prefer implicit or semi-implicit

solvers. So let us have a brief look at the implicit schemes. 
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Now these implicit time integration methods are normally used for solution of steady state or

slow transient flows for which we need to employee large time steps. But there is one small

problem here. We have to solve a set of coupled nonlinear equations; we have got momentum



equations which are coupled nonlinear equations and we have the Poisson equation for pressure

as again in terms of the products of velocity components which are unknown. 

So we have got a coupled system of nonlinear equations which must be solved simultaneously

using a  Newton-Raphson type iterative scheme.  And in our recitative process the results  for

preceding time step are known to as so they are used as initial guess in the iterative process. Very

often what do we do is we linearize these equations; use the value of previous time step in that

linearization process, so we get a system of linear equation so solve them, get updated value. 

Use that updated in the quasi-linearization process to get a next system of linear equation solve

them and continue the iterative process until we are satisfied with the convergence at a given

time  step.  So  this  quasi-linearization  is  very  often  used  in  conjunction  with  implicit  time

integration schemes.
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And solution scheme is very obvious here that is we have to take the velocity of pressure field

time level n as the starting guess for values at time tn+1. Solve the coupled nonlinear equations

momentum equation and pressure Poisson equations simultaneously to obtain the velocity and

pressure field at the new time level. This Pressure Poisson equation we already learnt yesterday

in the previous lecture. Okay, so that completes our algorithm part. 



And remember that this implicit time integration scheme they are extremely demanding in terms

of competition time and memory requirements as we need to solve a very large nonlinear system

at  each time step.  So as  I  mentioned earlier  we would usually  go forward we call  a  quasi-

linearization, so that we need to solve only a sequence of linear systems especially for steady

state problems.

We will see few specialized schemes which are based on this quasi-linearization approach in a

set of schemes which are termed as pressure correction based schemes in the next lecture.


