
Computational Fluid Dynamics
Dr. Krishna M. Singh

Department of Mechanical and Industrial Engineering
Indian Institute of Technology - Roorkee
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Special Features of Navier-Stokes Equations

Welcome  to  module  8  on  Numerical  Solution  of  Navier-Stokes  equations.  So  this  module

represents the heart of a CFD, that is to say the application of the techniques which we have

learnt so for, their application to solution of real life flow problems. So in this module, we will

have a brief look at the fundamental features of Navier-Stokes Equations, what differentiates

them from the generic transport equations which we have solved earlier using finite differences,

finite volumes and finite element methods.
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And then we will have a look at Explicit and Implicit Time Integration Techniques as they are

applied to the solution of incompressible Navier-Stokes equations and we would look at Implicit

Pressure Correction Methods which are popular for the solution of steady state problems and we

will also look at Fractional Step Methods.

Now this  module  would  make  use  of  all  the  knowledge  which  you have  gained  earlier  on

discretization schemes, that is finite difference,  finite volume, or finite element method, time

integration techniques and the taking for solution of algebraic equations. So we will not go into



details of the spatial discretization using a particular technique or a particular time integration

scheme or use of specific algebraic equation solver.

We would focus on the fundamental algorithms and fundamental features which we require in

the solution of Navier-Stokes equations. So we will presume that the user is familiar  with a

particular discretization scheme, finite element, finite volume or finite differences, that is why

this has been made and then which are the explicit and implicit time integration schemes which

one can use and what are additional things which are required in the solution of Navier-Stokes

equations.

Now in the first lecture, we would focus on the special features of Navier-Stokes equations, what

differentiate these equations from the solution of ordinary single variable transport equations.
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So what are the special features that would form the crux of the today's lecture. We will look at

the different types of grid arrangements which we can use in Navier-Stokes equations which is

facilitated by the nature of the equations. In particular, we will have a look at what is called co-

located grid arrangement and what is meant by standard grid arrangement. In particular context

of the structured finite difference or finite volume discretization schemes.

Then we will have brief look at the Numerical Simulation of Incompressible Flows, in particular,



we will derive one equation which is essential in the solution of incompressible equations and it

does not come directly from our conservational laws which we call Pressure Poisson Equation

and we will have brief look at the Numerical Simulation of Compressible Flows just in a generic

fashion.
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Now what are the special features of Navier-Stokes equations. When we looked at Navier-Stokes

equations, what we call them essentially our momentum equations for a Newtonian fluid and

momentum equation is a vector equation so that essentially means that Navier-Stokes equations

are a set of 3 coupled partial differential equations. It is not a single equation in contrast to a

scalar transport equation and in addition, it must be solved along with the continuity equation

and energy equation.

So this is what differentiates the Navier-Stokes solution from the solution of a transport equation

or let us say simple heat conduction problem. In fact, in few of the literatures, it is very often

would when we talk about Navier-Stokes equations, what we mean is, we mean the correction of

continuity, momentum and energy equations taken together because all of these must be solved,

all of these are coupled and they must be solved together to obtain our flow variables that is to

say the velocity components, density, pressure and temperature.
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Now another  remarkable  feature  which  we have  we  can  observe  is,  that  each  conservation

equation  can  be  recast  in  the  form of  generalised  transport  equation  which  contains  a  time

derivative term, a convective term, a diffusive term and a source term. To clarify this point, let us

have just brief look at 2 of the equations, the continuity equation and the momentum equation in

the vector  form and let  us see whether  our contention  holds  good or  can be recognised the

similarities between Navier-Stokes equations system and our generic transport equation.

(Refer Slide Time: 05:36)

So first  let  us write our generic transport  equation,  del of rho phi/del  t+divergence of rho v

phi=divergence of gamma*gradient of phi+we had a source term for q phi. So the first term, this

was our temporal derivative. This is what we called the convective term, this was our diffusive



term and the last one was our source term. Now let us have a look at continuity equation, del

rho/del t+divergence of rho v=0.

Now if you compare the 2 equations, this generic scalar transport equation and our continuity

equation, what we can observe is simply if we put phi=1 and gamma and q phi as 0, we get our

continuity  equation.  So  the  continuity  equation  also  has  a  temporal  derivative  term  and  a

convective term. We can assume here that gamma=0 and q phi=0 but in form, it is very similar to

our generic transport equation.
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Similarly, let us write our momentum equation which we also called as Navier-Stokes equations,

Del rho v/del t+divergence of rho vv-gradient of p+divergence of tau+rho*b. So once again if

you compare this equation with our generic transport equation, the similarities are obvious. We

have got a time derivative term, a convective term, (()) (09:18) represent our diffusive term and

this body force could be taken, body force along the pressure gradient, these 2 can be combined

together in the form what we call the source term.

Okay, so from these continuity equation and momentum equation, it is very similar to that of our

generic transport equation and that would allow us to make use of this test  which you have

learned earlier for numerical solution of generalised or generic transport equation. So that is why

we said that each of the conservation equation can be recast in the form of generalised transport



equation which contains a time derivative, a convective term, a diffusive term and a source term.

So all that it means is that we can chose a specific technique, let us say for special discretization

and for time integration which we have earlier learnt for the solution of scalar transport equation

and that scheme can also be extended rather easily, full solution of full  set of Navier-Stokes

equations.
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Now if we deal with compressible flows, in the compressible flow of continuity equation, it is

essentially a transport equation for density, the del rho/del t that is time derivative for density and

plus divergence of rho*v that gives us convection term for the density momentum equation that

represents a transport equation for velocity and energy equation represents the transport equation

for either total energy or we can also transform it into the transport equation for temperature.

So in fact in the case of compressible flows, it is rather easy for us to combine these set of

equations as continuity equation, momentum equation and energy equation in form of a generic

vector equation representing transport of a vector quantity and apply a solution technique to

solve this set of equations.

So all that we need to do in this case is, discretize each equation, solve the collection of resulting

discretized equations which are non-linear and we have to supplement our equations, though by



equations of a state for instance we have pressure coming into the momentum equation, we have

got viscosity, we have got thermal conductivity coming energy equation. So we need to supply

additional equations for the evaluation of these, equation of state is required for computational

appraisal.

We also need equations  which will  give us temperature dependent  viscosity and the thermal

conductivity to enable us to solve the compressible flow problem. But as far as the conceptual

solution process is concerned that is very simple that since each equation represents a transport

in particular quantity, continuity equation represents transport equation for density.

X momentum equation is transport equation for let us say rho u, y momentum equation gives us

transport equation for rho v, z momentum equation will give us transport equation for rho w and

energy equation will give us the transport equation for let say total energy, discretize each one of

them separately  using same set  of discretizing  procedures and time integration  schemes and

solve them sequentially.

In fact, if you are using an explicit solver, the solution becomes very simple, we do not have to

use a sequential iteration scheme in that case. So thus in algorithmic terms, the algorithm for

numerical solution of unsteady compressible flows is relatively straightforward. Of course, there

are issues which we will have to take care of when we go to a hypersonic compressible flows,

there would be formation of shockwaves which have to be accounted for. So the solution process

would be a bit involved, we have to take extra care in that case.

We are not going to discuss those issues in this introductory course, but nevertheless if you can

choose  fairly  small  time  step  and  a  good  quality,  a  fairly  refined  mesh,  we  can  solve  our

compressible Navier-Stokes equations for any mock number without much fuss. Of course that

will involve huge amount of investment in terms of the computational time. Next, let us have a

look at incompressible flows.
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For incompressible flows again, the governing equations are in the form similar to the generic

transport equation with one difference here, that in continuity equation what happens is, it is not

a dominant equation in terms of density, density here is constant that we know. So the continuity

equation cannot be said to be a transport equation for density. Similarly, there is no equation of a

state.

Since we do not have a equation of state like p=rho rt for an ideal gas involved in compressible

flow simulations, then how would we get a pressure and we do need gradient of pressure in a

momentum equation.  For this  particular  feature,  it  is  worth requires special  attention for the

solution of incompressible flows and that would be one of the issues which we are going to

address today.

Again please remember that in the case of incompressible Navier-Stokes equations, there is no

equation of state which relates to pressure, temperature and density and in this case, continuity

equation reduces to what we call a kinematic constraint on velocity field. We will have to say

that divergences of b is 0.

So velocity field which we get as a part of a solution process, would be such that is divergences

free which is essentially a kinematic constraint, it is not a dynamic constraint, but nevertheless

for the satisfaction of continuity, this kinematic constraint must be satisfied by the velocity field



which we compute numerically. So there are 2 issues that how do we get pressure and how do we

satisfy  this  kinematic  constraint  imposed  by  the  continuity  equation.  We  would  address

specifically today.

(Refer Slide Time: 16:24)

Now what other features. If you can go back to the mathematical classification which we dealt of

conservation equation which we dealt in module 2. We said look, Navier-Stokes equations, the

non-linear  coupled  equations  and  they  have  got  what  we  call  a  mixed  nature  given

incompressible  Navier-Stokes equation if you have say steady state then we say it  is elliptic

equation, if it were unsteady, we say it is parabolic.

When  we  go  for  compressible  flows,  the  situation  becomes  even  more  complicated,  that

classification of the equation would depend on the basis of local mark number of the flow. So

even if you are dealing with a steady state problem, there could be regions of flow where the

equation  is  elliptic  in  nature,  there  are  other  regions  where  it  becomes  hyperbolic.  So  the

equation is  mixed and coming up with a  single numerical  simulation algorithm for a mixed

equation is rather difficult.

We also saw one feature that if you look at unsteady Navier-Stokes equations, situation is slightly

different, specifically with respect to time. Unsteady Navier-Stokes equations for incompressible

flow, they are parabolic in nature. Similarly, unsteady Navier-Stokes equations would become



hyperbolic for the case of high-speed compressible flows.

So this is something which we can utilise or we can exploit in the numerical solution because

here now the nature is much simpler, it is not a mixed nature, so as a parabolic or hyperbolic in

time  for  incompressible  or  compressible  flows  respectively.  So  can  we  make  use  of  this

particular thing.

So that  is  why we have  this,  there  are  numerical  difficulties  which  are  associated  with  the

solution of purely elliptic in the case of steady state incompressible flows or mixed PDEs in the

case of compressible flows or compressible Navier-Stokes equations. We rarely attempt to solve

the steady state Navier-Stokes equations in either case.

In fact, Navier-Stokes equations are mostly solved as unsteady problem even if the flow is steady

using a time marching scheme and what we say that we have to integrate in time for fairly long

time instance. So longtime solution is what would be or this longtime solution of this transient

Navier-Stokes problem would (()) (19:06) solution of actual steady state.

And this methodology is universally used in the solution of Navier-Stokes equations whether we

are  dealing  with  incompressible  flows  or  compressible  flows  that  we would always  solve  a

steady-state flow problem as an unsteady problem. If your steady state solution is our only aim,

we would normally use implicit time integration scheme which will allow us to use large time

steps to reach the steady state very quickly.
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Now Navier-Stokes equations, they are governing equations for a vector field and together with

this, with velocity, we have got energy equation which is a transport equation for a scalar field.

We have got a scalar variable pressure involved in Navier-Stokes equations. For compressible

flows continuity equation brings another scalar variable that is density. So here we have got a

mix of the scalar and vector variables, okay.

Now, this mix allows us more freedom in the choice of grid used in numerical simulation. So

what popular grid choices which have been tried, let us have a look at them. Now the choice of

the grid would also depend on the discretization scheme that is to say whether we have chosen

finite difference needed, finite volume method, or finite element method. We can classify these

choices broadly in 2 categories based on the arrangement of our flow variables on grid nodes.

The first one we call collocated arrangement and the second one is called staggered arrangement.

So what is a collocated grid. There are 2 alternative spellings which we use for collocated, either

coll  or  c-located,  the  second  one  gives  us  a  clearer  picture,  just  this  everything  is  located

together. Co means together. So if all the variables that should say our velocity components,

density, pressure, temperature, they are stored at same set of grid points, then the grid is called

collocated grid.
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And in this case, there is considerable simplification in the programming and specifically we will

not use advanced or what we call fast solvers based on the multigrid methods there. We need to

use restriction and prolongation operators for hierarchy of course grids which we use. So if the

same set of grid nodes are being used for all the variables, we can use the same restriction and

prolongation operator for each variable, whether it is the velocity components or temperature or

density. 

So that are the advantage which we get in the case of co-located grids. Before proceeding further,

let us have a graphical look at what do we mean by a co-located grid.
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So first let us take a case of a structured grid which we might use in finite difference or finite

volume formulations and suppose we take for instance, let us take vertex based grid, this is finite

difference or finite volume grid vertex based. So let us use 2 symbols, we will use this field

circles,  field  circles  would  represent  the  grid  nodes  for  scalar  quantities.  For  example,  our

pressure, temperature and density.

We are talking about co-located grid. Let the same grid points would also be used as the grid

nodes for velocity. So let us use arrows to indicate, so this is X velocity component, Y velocity

component. So what we say that the same grid nodes are being used to store our scalar variables

as well as these vector components evenly everywhere, analogous pictures we can draw for 3-

dimensional case.
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Similarly, if you are using cell-centred formulation that is our computational node is at the centre

of a cell, so that is where all the other problem variables or flow variables are defined that is to

say at the centroid, so field circles to represent scalar or similarly here. For velocity components

also defined at these cell centroids. The situation is a bit more complicated in the case of finite

elements, though theoretically this again our FDM or FVM cell centred co-located grid.

Theoretically for finite element,  what we will say, let us suppose this we have got triangular

elements in 2-D set, the scalars will also be defined here and our velocity components will also



be defined at these nodes. Why I said theoretically because there are certain requirements which

the finite element interpolations should satisfy for pressure and velocity which would not allow

the use of the shape function of the same order for both pressure and velocity components.

For the sake of explanation of co-located grid in the context of finite element if you are supposed

to chose, that is what we have to take there. Okay, so this co-located grid, they all have been

tried, they have been popularly tried in unstructured finite volume schemes.
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And there was a major disadvantage of these schemes, what we call lack of pressure-velocity

coupling which might lead to what people call as oscillations in pressure field or chequer-board

pattern for the pressure field. Now this was the situation a decade or so back when these schemes

were used extensively for the first time.

The recent developments have been able to deal with this problem of chequer-board pattern and

with the advent of or the popularity of what we call unstructured finite volume mesh for CFD

simulations,  co-located  grids  are  back  in  favour  in  numerical  simulation  of  Navier-Stokes

equations.
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Next, let us have a look at what we call staggered grid. Now here, velocity components and the

scalars are stored at different set of nodes. So if that is the situation, then we would say the grid

is staggered grid. So the basic definition is that if velocity components and the scalars are stored

at different set of nodes, then the grid used in CFD simulation what we called as staggered grid.

In finite  difference or finite volume simulations,  what we would normally choose is that the

pressure or the scalar nodes, they would lie at the centroids of the grid cells and velocity nodes

are located at the centre of respective cell faces in the case of finite difference or finite volume

method and in the case of finite  element,  we will  have to  use separate  set  of  elements,  for

instance we will use for example linear element for pressure and quadratic element for velocity. 
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Let us have a look at the graphical representation of staggered grids. Let us draw for the sake of

simplicity, a structured finite volume or finite and difference grid. Now the centroids are the ones

where pressure or temperature would be defined, that is the way we are going to solve for all the

scalar  components.  So  our  filled  dots,  they  indicate  computational  nodes  for  scalar  flow

variables.

For example,  pressure,  density and temperature.  The velocity  components would be defined;

their nodes would be defined at the cell faces. So that is where is the locations of U velocity

components  and  similarly  these  faces  for  our  V  velocity  components,  that  is  where  the

computational node for the V velocity component would lie. Okay, if you want to have a look at

how the finite volumes would look like for each of these components, let us redraw this figure

and illustrate each finite volume separately.
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So for the scalar variables, it is very obvious, this whole cell, this is our control volume for scalar

quantity. How about the U velocity component, how we will define the control volume for that,

so let us draw it separately other box here. So this is where, suppose this is one of the U velocity

nodes. So this corresponding control volume would be this, so with respect for instance this is P,

this becomes the east face, this is our west face, south face and north face for a scalar control

volume.

For control volume for U velocity component, let us call it as Pu, so this becomes our E stern

face for u, western face for this. Let us hatch it differently. Similarly, southern face and this is

northern face. So this is CV for U velocity component. In the same way, for the sake of clarity,

let  us  extend  this  figure  further  here,  these  are  scalar  nodes.  So  the  faces  of  V  velocity

component will pass through the scalar nodes.

So  let  us  use  vertical  hatching.  Now  this  is  the  CV  for  V  velocity  component.  This  is

computational node on the other faces, east face, west face, south face and northern face for the

control volume which we would use in finite volume formulations for V velocity component. So

what we clearly say here that the computational nodes for each velocity component is at different

location. In finite volume formulation, we will have to use separate finite volumes for a scalar

variable and each of the velocity components.



So that would introduce lots of book-keeping, it will make our algorithm part of programming

component which is a bit complicated, but there is a tremendous advantage which we can see if

you look at the first figure which we have here. Traditionally what we think that velocity field or

the flow is driven by the difference of pressure. So velocity at any node that is because of the

pressure  difference  at  adjoining  2  computational  nodes.  So  that  is  why  this  particular  grid

arrangement gives us what we call very strong pressure-velocity coupling.
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Now similarly if you are dealing with finite element, then you would use linear elements for

pressure. This is FE for pressure and for velocity, we will have to use the quadratic element. This

is quadratic element for velocity. The advantage I just mentioned.
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There  is  strong  coupling  between  the  velocity  and  pressure  field.  Because  of  it,  this  grid

arrangement  has  been  the  most  popular  in  CFD analysis  and  disadvantage,  we  have  to  do

elaborate book-keeping and if you want to use multigrid for the solution of each of the flow

variables, then we have to maintain separate set of multigrid operates but not withstanding this

disadvantage of elaborate book-keeping and having separate set of operators.

the first, the advantage which is offered, that is very, very strong motivation and even today,

staggered  grids are  used in  preference  to  co-located  grids  in the context  of  structured finite

difference or finite volume analysis.
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Now let us come to the numerical simulation of incompressible flows. This one problem which

we mentioned earlier, that Navier-Stokes equations for incompressible flow, they involve a term

pressure gradient, the gradient of P is there, but there is no equation for pressure in contrast to

compressible flows where pressure can be computed from equation of the state. We do not have

any such independent equation for pressure for incompressible flow problems.

So in this case, if you do not have an equation for a variable and it is one of the most important

flow variables involved which drives our flow, what do we do. So suppose we are dealing with

isothermal  flow,  so  there  we  will  have  a  set  of  4  equations,  continuity  equation,  so  it  is

divergence of V=0 and 3 equations for each of the velocity components but there is no equation

for pressure.

So we have got, though unknowns are 4, pressure plus 3 velocity components and we have also

got 4 equations available to us, but continuity equation cannot be used directly because it does

not involve pressure, so it cannot be used as equation for pressure and it essentially represents a

kinematic constraints. We have to do some manipulations to derive equation for pressure using

our continuity equation.

So that is what it is where we out of this difficulty of an independent equation for pressure is to

construct the pressure field so as to guarantee the satisfaction of continuity equation. So we will

try to construct a pressure field whose solution would guarantee or if you use a pressure field in

our momentum equation and solve for the velocity  field,  that velocity  field is guaranteed to

satisfy continuity equation.

That is to say, our mass conservation is enforced. So how do we do it, how do we achieve this

objective.  To achieve this objective,  we combine the momentum and continuity equations to

obtain an equation for pressure 
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Which is in the form of a Poisson equation and hence it is commonly referred to as Pressure

Poisson Equation. How do we obtain this equation, let us have a detailed look at it. Let us write

our continuity and the momentum equations for incompressible flow.
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So our continuity equation is simply divergence of V=0 or in (()) (41:35) notation, we can write

it is del vi/del xi=0. Next our momentum equations, del of rho v/del t+divergence of rho vv=-

gradient of p+divergence of tau rho*b. Now let us rearrange the terms here. So let us rearrange,

keep pressure on the left-hand side. So rearrange momentum equation, so we can write this as

gradient of p=-del of rho v/del t divergence of rho vv and the remaining terms.



For simplifying our algebra, let us write this equation in Cartesian tensor notation. So left-hand

side is del p/del xi=-[del of rho vi/del t, we have retained rho here, that rho is realize that we are

dealing with incompressible flows, it is just a constant value, del/del xj of rho vivj del/del xj of

tau ij-rho bi].

Now let us take divergence of this equation because in continuity equation, that is what we have

got. So divergence operator is sitting there.
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So taking divergence of momentum equation, so we will apply to this rearranged form, what do

we get, del/del xi del p/del xi=-del/del xi of del/del t of rho vi-del 2 of rho vivj/del xi/del xj+del 2

tau ij/del xi del xj+del/del xi of rho bi. Now let us have a look at each term in this equation 5

separately. This del/del xi del/del t of rho vi, this we can exchange this temporal and special

derivatives.

So we can write it as del/del t, rho is a constant, so we can take it out, rho del vi/del xi. Del vi/del

xi that is divergence of velocity field which is 0 for incompressible flow. So this term evaluates

to 0, okay. So therefore what do we get del/del xi of del p/del xi=-del 2/del xi del xj of rho

vivj+del 2 tau ij/del xi del xj+del of rho bi/del xi. Now this equation has a form very similar to

our Poisson equation.



So what we have got, on the left-hand side, we have got the Laplacian for p. On the right-hand

side, this represents a sort of a source term. So this is our Poisson equation, wherein we have to

still maintain a possibility that viscosity may not be constant. In fact, we will get a simplified

form.
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So if viscosity were constant, is assumed constant, then what happens. Our del/del xj of tau ij,

this reduces to mu*del 2 vi/del xj del xj. So if you apply del xi, therefore del/del xi of del/del xj

tau ij, this is mu*del 2 del xj del xj of del vi/del xj. So this also vanishes because of continuity.

So we get a very simple form for a Pressure Poisson equation.
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Similarly our body force term that would normally be the gradient of a scalar field, this body

force is usually gradient of a scalar field, can quickly verify it for the gravitational force field

which is because of the gravitational potential. Hence this divergence would be 0, so del/del xi of

rho bi, this is 0. So therefore, for constant viscosity flows, that is to say if we are dealing with

homogeneous isotropic and isothermal flows, our Pressure Poisson equation takes a very simple

form, del/del xi del p/del xi=-del/del xi of del rho vivj and xj.

So this is our final form for the Pressure Poisson equation for flows with constant viscosity.

Remember in our derivation what we have done, we have started off with momentum equation.

So this inner derivative of p in our Laplacian operator, so this side, this is Laplacian of pressure

field p. 
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The first operator, this Laplacian we can write as del/del xi that is outer one and then we have got

this inner one, del/del xi p, this inner operator. This inner operator is from a momentum equation,

okay and the outer of the divergence, this comes from continuity equation because that is what

motivated us to take divergence. We would apply the same operator which we would use for our

continuity equation and this has got some important consequences which we must take care of in

our numerical implementation.

So simplified Pressure Poisson equation, this is summary of what we have derived, del/del xi of



del p/del xi= -del/del xi[del of rho vivj/del xj] and I purposely put these 2 operators separately.

So that the outer del/del xi clearly indicates that this is the divergence operator coming from a

continuity equation and the inner derivative del p/del xi or here del of del xj of rho vivj, these are

linked to our momentum equation.
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So we should be aware of it  that  Laplacian Pressure Poisson equation is  the product  of the

divergence operator originating from the continuity equation and the gradient operator of the

momentum  equation.  So  to  maintain  numerical  consistency  it  is  essential  that  whatever

discretization  scheme we  use  for  approximation  of  Pressure  Poisson  equation,  that  must  be

defined as a product of the approximations in divergence for continuity equations and gradient

operator which we would use in our momentum equation.

If this is not taken care of, the satisfaction of continuity cannot be guaranteed by your numerical

solution. We will just take a brief algorithmic look at the solution of compressible flows.
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We will combine continuity, momentum and energy equations into a generic vector equations

which is what is normally done and then we would discretize this generic equation usually, the

simplest way would be to choose an appropriate explicit time integration scheme and obtain the

solution  at  the  next  time  step  in  conjunction  with  suitable  equation  of  the  state  to  get  our

pressure.

Similarly, we can also use our solution variables at a given time instant to calculate the viscosity

and conductivity which is required and the primitive variables that is density, density would be

solved, that would be part of one of the components of a generic vector unknown. But other

components of that vector unknown would be rho U rho V and rho W and then total energy.

So the primitive variables that would be obtained from this generic solution vector rho obtained

directly use or obtained by taking the ratio of rho U/rho. Similarly rho V/rho would give us V

component and rho W/rho would give us the W component. Substitute for that magnitude of

velocity  in  our total  energy equation,  we can get  e  that  is  internal  energy, Ug=CVT, that  is

T=e/CV to obtain the temperature field and so on.
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So we have run out of time in this lecture, may be some of the details might have a look at in

future lectures time permitting. For further details for the time being, I would refer you to the

references,  read  the  book  by  Chung  on  Computational  Fluid  Dynamics  or  Computational

Methods of Fluid Dynamics by Ferziger.

There is another book which is a beautiful Introduction to Computational Fluid Dynamics that is

Introduction to Computational Fluid Dynamics by J. D. Anderson and that is specifically useful

for  compressible  flow simulations.  So please  have  a  look at  the solution  algorithms for  the

compressible flows in Anderson's book.


