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Lecture – 34
Application of FEM to Scalar Transport

Welcome to the last lecture in module 7 on finite element method. In the previous lectures, we

have  discussed  the  basic  introduction  to  finite  element  method  and  we  looked  at  specific

formulations which we call weighted residual formulation. Then we had also had a brief look at

the  variation  formulation  and then  we discussed  few typical  finite  element  shape  functions,

specifically  the  polynomial  shape  functions  of  Lagrange  family  and  Serendipity  family  for

rectangular elements.

We also discussed the shape functions for triangular and hexahedral elements and we also had a

brief look at the numeric integration. Now in the last lecture, we are going to have a look at

application of FEM to scalar transport; in particular, we will discuss the application of finite

element in detail to 1-dimensional heat conduction problem.

So the aim of today's lecture will be to give you a detailed derivation of the method, how do we

derive each of the element matrices, how do we complete the assembly process so that you can

relate  it  and convert  it  into a  computer  program for  numerical  simulation.  So let  us  have a

recapitulation of what we did in lecture 3 of this module.
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We  discussed  Finite  Element  Shape  Functions  for  2-dimensional  elements  and  then  3-

dimensional elements. We also discussed what we mean by Iso-parametric Elements which are

used in the case of complex geometries where in we would use the same shape functions which

we have used for variable variation to map a model the geometry of the element.

And  then  we  discussed  the  evaluation  of  integrals,  basically  Gaussian  Quadrature  for  the

rectangular  elements  and  we  also  mentioned  that  how  do  we  apply  simple  1-dimensional

Gaussian Quadrature formula for the integration of brick elements in 3-dimensions and then we

had a discussion on the integration for a triangular elements and we briefly mentioned special

Quadrature formulae for triangular elements and just mentioned the possibility of a similar set of

formulae for tetrahedral elements in 3-dimensions.

And today's lecture, we would apply finite element to the scalar transport problem since this is

just  1  sample  of  allocation  which  will  give  you  an  idea  that  how  do  we  proceed  with  a

formulation  of  finite  element  method  to  a  particular  problem and  in  what  way can  that  be

translated into a computer program to solve a wide range of problems.
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So we will first discuss application of FEM to 1-dimensional diffusion problem. We will have a

look at weighted residual formulation. This is the formulating which is used most widely because

of its wide applicability. We do not have to worry about existence of variational form or what we

call a scalar functional which can be minimised to obtain a finite element formulation. So this

weighted residual formulation can be applied to any given problem.

And then we will extend this application, rather we will specialise discussions on 1-dimensional

diffusion problems to 1-dimensional heat conduction problem. We will have a detailed look at

the Galerkin finite element formulation and then we will see how do we compute the elemental

matrices. In this case, for 1-D, it would be possible for us to compute these matrices analytically

and then we will perform the global assembly of elemental matrices.

And then we will discuss the numerical solution which we obtained from finite element and

compare it with the solutions obtained for the same problem using finite difference method. In

fact, we will take the same running example which we have taken earlier in our module 3 in

finite difference and later on in the module on finite volume techniques and then we will discuss

briefly the Guidelines of the Computer Implementation of finite element method which is most

likely more complicated than finite volume or finite difference formulations.

So first let us have a look at our 1-dimensional problem.
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Let us have a look at the description of the problem and let us restrict ourselves to steady state

situation. So if you got steady state diffusion of a scalar phi in 1-dimensional domain of length L,

the extent of domain are from 0 to L, it is governed by the differential equation d/dx of gamma d

phi/dx+S=0. Now here this gamma is diffusion coefficient and S is the source term which may or

may not be dependent on this scalar phi.

It  could be set  of boundary condition,  suppose for the time being that  we assume Dirichlet

boundary conditions at both ends that is the value of the phi is specified at both ends, 0 and L, so

phi 0 is phi subscript A and phi at x=L=phi subscript B. The formulation would not depend on

boundary condition per se. That is why we have just taken a set of typical boundary conditions.

Now the first step of finite element formulation, we have now got to choose our discretization

procedure.
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We have to choose which type of elements we want to use. So suppose just take the simplest one

of them. Let us describe domain using 2 node linear finite elements.  So in any element,  the

unknown function phi  is  approximated  using this  linear  shape functions  that  phi  ex=N1xphi

1e+N2x*phi 2e. Now here this N1x and N2x, they are what we call linear shape functions which

depend on the spatial location x and phi 1e and phi 2e.

They are values of phi at local nodes 1 and 2 of the elements. These linear shape functions would

satisfy the basic condition which we have discussed earlier that if they would have what we call

Kronecker delta property of the nodes as well as they will satisfy the partition of unity. Now let

us have a look at weighted residual formulation.
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So suppose we have this particular case, we substitute for phi an approximate value or for the

sake of simplicity, we have dropped that phi tilde, that we have dropped, so I have just written d

phi/dx here. So d/dx gamma of d phi/dx+S, this gives us what we call our residual assuming this

phi  were an approximate  solution,  multiplied  by a weight  function,  wi,  integrate  it  over  the

domain that is 0 to L, dx=0.

Now this is what is called a strong form because there are 2 derivatives here. So we will have to

maintain at least a level of differentiability of phi that is we should be able to differentiate it

twice. So that is a much stricter or stronger requirements on our shape functions which we would

choose and the shape functions which I have chosen earlier, was it only linear elements, so the

strong form will not work.

So what  we need to  do is,  let  us perform integration  by parts  to  obtain the weak form. So

integration by parts, we will focus primary in the first term which contains derivatives. So let us

use the simple rule of calculus, so the first term when we integrate this omega i*d/dx gamma d

phi/dx over 0 to L dx is, the first term would be wi*integral of the second term that is integral of

d/dx of gamma d phi/dx, integral of the second term is simply gamma d phi/dx.

So that is why we got the first term as gamma d phi/dxwi at 2 limits of the domain, 0 to L, -, next

term what we will get, the difference of the first term that was wi, so dwi/dx integral of the



second term which was our this d/dx*gamma d phi/dx this integral is gamma d phi/dx, so that is

why we get it here. So this is a second term which we get from the integration by parts of the

second term involving second order derivative.

So -0 to L d of wi/dx gamma d phi/dx-wiS, that we have retained the second term, wi*source

term as such and this whole thing has to be integrated from 0 to L, dx=0. Now this is a global

weak form.
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For finite element formulation, we will choose our appropriate local functions and in Galerkin

formulation, what do we do, we will choose a weight function as a shape function for an element,

so  if  you perform a  substitution  and express  our  integrals  in  terms  of  this  shown over  the

elemental integrals, compute those integrals, sum it up, collect the complete system. So, then we

would get the following discrete algebraic system, Ku=f.

Now  this  capital  K  is  called  a  stiffness  matrix  for  historical  reasons,  the  finite  element

formulation  which  first  applied  in  the  structural  mechanics  and there  the  matrix  which  was

obtained for this particular system that was referred to as stiffness because that was related to the

stiffness of the structural elements. So same terminology is used in finite element application to

any problem, so this matrix is historically called stiffness matrix.



U is the vector of a nodal unknowns phi i and we would follow the terminology which originates

from structural  applications  finite  element,  this  f  is  called  the load vector  and to  obtain the

solution, we have to solve this linear system to get our nodal unknowns.

(Refer Slide Time: 11:42)

and matrices K and f, their elements were given by this Kmn=Sigma e Kmn for that particular

element because we have taken the integral, we have summed it over the elemental integrals and

so on and similarly, this fm is given by summing up all the terms corresponding to the load

vector which we get from elements, so Sigma over e fme.

So now what are these Kmne, Kmne = integral of Sigma e that is integral over a given element

which we have denoted here by Sigma e Nm, k, now here this presence of comma that indicates

the derivative, similarly Nm, k*Nn, kdx and fme is integral over the element of NmSdx. Now

there is some mysteries involved here, how do we get these terms, these are we are going to

clarify when we take a special case of application finite element q 1-dimensional heat conduction

problem.
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Here we will illustrate each step in detail (()) (12:58) in above. So now let us specialize our

application that this is heat conduction equation specification of diffusion equation and in this

situation, we have taken the conductivity to be constant. So let us take governing equation for

steady state heat conduction with heat generation in a slab of constant conductivity.

So if you compare this scalar problems which we have discussed earlier, what we have done is,

we have taken our diffusion coefficient to be constant which is conductivity in this case, so it

becomes kd2T/dx square+qg=0. Now let us assume that heat generation depends on temperature,

we have some situations where it would and majority of situations where it might simply be a

constant.

So for this for generalised case, let us take qg = f+ this alpha*capital T, where this alpha is the

coefficient of linear dependence and f is the constant part of our heat generation term.
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Now  let  us  write  our  weighted  residual  statement  where  we  will  presume  that  we  have

substituted an approximate solution for capital T, so kd2T/dx square. For qg, we have substituted

f+alpha T. So kd2T/dx square+(f+alpha delta T), this is what becomes our residual because we

have presumed this capital T is our approximate solution to the exact function T.

So residual multiplied by a weight function wi integrate over the domain 0 to L dx, set it to 0, so

this is our weighted residual statement in what we call strong form because it will presume that

this approximate function or approximation of the temperature T must be differentiable at least

twice.  To  reduce  this  differentiability  requirement  which  will  be  transferred  to  the  shape

functions which are used to approximate T, let us perform integration by parts.

So once again let  us do the integration  of  part  only. We will  focus on the first  term which

involves kd2T/dx square. The second term, we do not need to worry about. We will retain as

such. So we are looking at the integral 0 to L of wi kd2t/dx square. Now we would like to put

every step in detail. So now let us move on to our goal.
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So application of FEM to 1-D heat conduction. So we will start of from our weighted residual

statement which we have written earlier. So our weighted residual statement, that is the starting

point of a finite element formulation. this is 0 to L wi[k*d2T/dx square+f+alpha T]dx=0 and this

is what we said is our strong form. Let us call this equation 1. Now we would like to integrate the

first term or our first part of this integral by parts, so let us try it out separately. 

Integration by parts, so integral 0 to L wik*d2T/dx square dx. Now this consists of k is constants

that we can take out of the integral. So our first term we will take as wi and second term for

application  of  our  rule  of  integration,  we  will  take  that  as  kd2t/dx  square.  So  the  rule  of

integration size retain the first term as such. Integration of second term that is k*d2T/dx square,

that will give us k*dT/dx, different integrals we will have the contribution coming from both the

ends -0 to L. 

Differential of the first term, the first term was wi, so it will have dwi/dx k/dT/dx to dx.
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So if you substitute this 2 in equation 1, so substitute expansion 2 in equation 1 and what do we

get, the first term, wikdT/dx 0 to L-integral 0 to L, now we will take the second term on RHS of

equation 2 and the remaining term which we had in equation 1 as such, so let us combine them

together and write them in big brackets so we get [dwi/dx k*dT/dx- because we have taken

minus on outside and first term what was positive, so this is negative here, f+alpha*T]dx=0.

So this is what is our required weak form of this weighted residual statement because the part of

the continuity requirement, now we have shifted from T to wi, shifting it from T to wi essentially

means that if you are shifted from the interpolation functions on to the weight functions. So we

have got much weaker continuity requirements on the shape functions which we are going to use

to approximate T, so that is one aspect.

Second aspect which we can say is we look at the first term of this equation, wikdT/dx, now this

has to be evaluated at the ends of the domain, that is boundary of the domain 0 to L, kdT/dx you

can easily identify or link it with the flux term. So if their flux boundary condition is specified at

the boundary, those are taken care of naturally here. So this is also one of the reasons why this

flux specifications is referred to as the natural boundary condition which is incorporated as such

exactly without any approximation in our finite element formulation.

So this is a strong contrast to what we have to do in finite difference formulation or in finite



volume formulations where we have to make use of one-sided difference formula to take care of

the flux specifications. So this in the essence say that we might have specific advantage because

whenever there are natural boundary conditions specified that is flux boundary condition was

specified, we would get a more accurate solution using finite element method compared to finite

differences because the flux terms would be taken as such in their exact form.

Okay, so that is what we have to get our, we have got our weak form and we have already

mentioned  this  weak  form  incorporates  our  natural  boundary  condition  or  flux  boundary

condition exactly in our finite element formulation. Now, there are a few steps which we will

take care. We will take them one by one, so what are the steps which we have got to perform.
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The first we will have a look at what we call Galerkin finite element formulation and we will

work with linear  elements.  We will  assume our elements  of equal  sized h and then we will

perform analytical  integration of the elemental  integrals.  Thereafter  we are going to perform

elemental assembly. So now let us do each of these steps one by one.
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So we have already derived our global weighted residuals formulation and the integral which we

had over entire domain, that can be summed up in terms of the integrals over each element. So

that is to say that our basic philosophy here of finite element is simpler to this which we are

going to make use of that integral over the complete domain of whatever terms we get, this can

be represented as summation over e integral omega e of this function d omega, okay.

So this is the basic rule of calculus, so use basic summation rule of summation from integral

calculus and let us also note down the first term which we had that was linked to the boundary

nodes, so those will not be of any interest to us in evaluation or when we have considered each

element separately. No let us have a look at the elemental integrals one by one, okay. So our

elemental integrals before we go for that. We have to now use the approximation.

So  finite  element  approximation  using  linear  elements.  So  what  we  will  do  is,  we  would

approximate  the  temperature  in  each  element  in  terms  of  the  linear  shape  functions

N1ex*T1e+N2ex*T2e. So we are dealing with a particular element, let us call this as omega e,

the extent of this since we are dealing 1-dimensional problem. Suppose this size is h or delta x

whichever symbol you feel comfortable with, you can use it.

I would use h here to represent them as size which is node 1. This is node 2.
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Value of the temperature at node 1, we will denote it by T1e, the value of the temperature at node

2 will be denoted by T2e. N1e and N2e are linear shape functions. So here N1ex and N2ex are

linear shape functions. So if you want we can now use what we have learnt earlier in terms of the

natural coordinates. So in terms of natural coordinates, what we have are N1e as given by 1/2×1-

xi and N2 is given as 1/2*1+xi, okay.

Now here, it might be easier to work with the actual coordinates. So N1 and N2, they are both

linear functions.  So what we want to have, they would have linear variations,  so their  value

reference and this is the plot for N1e, it will take a value of 1 at node 1 and its value should be 0

at node 2 that is the requirement what we Kronecker delta properties. Similarly, this is the plot of

N2e which is 0 at node 1 and it takes value of 1 at node 2.

So can we write the expression directly in terms of x coordinates, x1 and x2. N1ex, this should

be x2-x/h. Because when the value of x is x1, x2-x1 that is what gives us h. So N1 becomes 1

there, then x=x2, this x2-x2/h which is equal to 0. So this is how this is the expression for our

shape function N1. Similarly expression for shape function N2, this would be x-x1/h. Now we

know our shape functions.

What would be the derivatives because we require in our weighted residual formulation, dT/dx.

So our dTe/dx, that is what we would need, dTe/dx, that would be dN1/dx*T1e+dN2/dx*T2e. So



we need the derivative of N1 and N2 with respect to x. So these are straightforward as difference

heat equations 3 and 4. So derivatives of shape function N1 and N2 are dN1/dx. You can clearly

see this simply -1/h and dN2/dx, this would be simply 1/h.
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Now let us have a look at the elemental integral for Galerkin finite element formulation. So you

can  make  2  choices  that  wi=Ni,  i=1  to  2,  this  is  what  we  do.  In  Galerkin  finite  element

formulation, our weight function would be the same as the shape function. So elemental integral

omega e,  that  constant  terms which appeared in our weighted residual formulation,  that was

linked to the nodes on the boundaries. So let us for the time being discount those terms.

Let us only have a look at the integral over the domain which appears and now let us have a look

at a typical term on our summation. So this is integral over our element omega e k*dNi/dx, let us

take i=1, so we can take it as that is dN1/dx, N1 stands for our choice of the weight function, so

let me choose that, this is wi=Ni. So dNi/dx within brackets, we want to find out the expansion

for dT/dx, so dT/dx is dN1/dxT1e+dN2/dxT2e and the second term is -alpha*Ni, wi is now Ni.

We get for T, N1T1e+N2T2e, whole thing over dx and the constant part which we had which we

have linked to the source terms, let us transfer it to the right-hand side which does not depend on

temperature. So we will get k*widT/dx 0 to L +integral over omega e f*, this is Nidx. So this is

our elemental integral equation. Where specific properties for these shape functions, so the N1



and N2, they are non-zero only over omega e. So this term is equal to 0 for interior elements,

okay.

So we need to just worry about evaluating the remaining terms and its elemental integral. So now

this equation, we have to write for 2 choices, for a linear element i could be 1 or 2. It is more

convenient for us to write it in terms of matrix notation, that is we will get 1 equation we chose

i=1  that  is  k*dN1/dx  multiplied  by  this  whole  term,  then  alpha  N2N1,  this  whole  term,

N1T1e+N2T2e and so on is  equal  to integral  over omega efN1dx and we can write  another

equation when we take i=2, so we get kdN2/dx/dN1dxT1e+dN2dxT2e and so on.

Now we can combine these 2 equations and we can write 1 elemental equation in this form. So

combining the integral  equations  for  both choices  of wi that  is  wi=1 and 2.  Let  us call  the

preceding equation as equation number 6. Combine form can be written as, now let us introduce

the matrix notation here.
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So we can have this k11, small k11e k12e small k21e, now let us, we can keep capital Ks here.

Capital K22e*T1e T2e, this is equal to b1e and b2e, let us call this equation as 7. So whatever we

have the terms which depend on T1 and T2, we have collected them on left-hand side and the

right-hand side term has been evaluated separately and remember that one term which we left out

kNidt/dx 0 to L that would appear or that would make a contribution only for the elements which



are towards the ends, so that we can take care of separately.

Now what will these elemental terms look like. So this particular equation is also referred to as

the element level equation, okay or in short-hand form matrix form, we can write it as Ke*vector

Te=vector b3. Let us call this 7a. Now what will be the elements of this matrix, let us this try and

workout this 7 is basically the collected version of equations 6 corresponding to 2 choices, i=1

and 2.

So basically what we will have is our Kmn, where m and n can take values from 1 and 2. This

Kmn is given by the integral over omega e, the first index remember comes from our choice of w

or weight function.  So we will  get  this  as k*dNm/dx.  What  else  we will  get,  multiplied by

dNn/dx, okay +the other contribution would come from our that alpha Ni terms. So alpha*Nmn.

So you can verify that this is indeed the case by choosing values of m=1 and n and write down

the expanded form for equation 6 for both choices of m and n. So let us call this as equation 8.

Similarly what do we get for bm, bm is nothing but integral of fNmd omega or dx for omega e

and both these equations that we have chosen, m and n, they can take values from 1 to 2. Our

next task is to obtain the explicit expressions for these terms K11 K223 or let us say our Kmn, so

what will be Kmne. Let us have a look at K11e.
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So K11e, this will be equal to integral of K times dN1/dx*dN1/dx-alpha*N1N1*dx. Now there

are 2 parts or 2 terms in this integral.  So let us evaluate them separately. So the first part is

integral x1 to x2, dN1 that was equal to -1/x. So -1/h*-1/hdx, so it simply gives us h/h squared or

this gives us value equal to 1/h.

Similarly our integral N1N1dx, this is integral of x2-x whole square dx x1 to x2 and if you make

this appropriate substitutions, so this will become 0 to h, if you substitute x2-x=t, so let us do this

substitution, so let x2-x=t, this tells us that -dx=dt. So our integral x1 to x2 x2-x whole square

dx=-h to 0 t square dt which can also be written as 0 to h t cube dt. So this gives us t cube/3 0 to

h or in other word from here we will get h cube/3.

Okay, so now we are ready to substitute the values in our, let us call it equation 8a, so substitute

into equation 8a and we will get K11e=k/h+h/e. So we have evaluated 1 term. You can repeat

exactly the same procedure to evaluate the other terms K12e K22e and so on, okay. So if you

apply this process of integration which I would leave as a simple exercise to you.
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So your exercise would be in calculate other elements of the stiffness matrix Ke using procedure

outlined above. So if you repeat that exercise, now I am going to sum it up that what we will get

after putting all these terms.
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Once we have got all the elemental integrals Kmne, we can sum them up and find out what

would be our global stiffness matrix Kmn and similarly we can also find out what will be our

global load vector f.
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So that is how the things look like for our, let us say we have used a subdivision into 5 of our

domain 0 to L shows how the terms look like, k/h-alpha*h/3. So in our elemental level equations

what we had, this h/3 was multiplied by factor -alpha. So this becomes k/h-alpha h/3, okay. So

that is how our things look like. Again a tridiagonal matrix, okay, so first row is k/h-alpha*h/3,

this is our K11. K12 is -k/h-alpha*h/6 and so on.



So you can easily calculate all these entries multiplied by T1, T2, T3 to T6 and this is what we

get on our right-hand side, h/2f-kdT/dx at 0. This is the term which we will get for the first node

or  rather  when  we  consider  the  first  element,  the  contribution  from  the  natural  boundary

condition,  there comes in picture and similarly, the contribution  at  the right end.  Remaining

terms is just simply coming from the source term and this equation has to be solved for after

application of the boundary conditions.

For instance, if, let us say temperature was specified at the first node T1. So in that case, what we

will do. This particular diagonal element would be set to 1 and rest would be set to 0 in the first

row and the right-hand side term, this b1 would be set to T1 of the specified value, let us call it

Ta.  If  the flux boundary condition was specified,  substitute  for the flux value here and then

modify the load vector.

If convective boundary conditions were specified, there will be some contribution coming from

here and that has to be added to the diagonal elements of the last row. So that is how we would

apply your boundary conditions.
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Now let  us  have  look at  one example.  So consider  our  continuing example  which we have

considered earlier in the case of finite difference and finite volume method. Steady state heat

conduction in a slab of width l=0.5 m with heat generation. The left end is maintained at T=373.



Right end is being heated by heater with a heat flux of 1 kilowatt per meter square and heat

generation is given by Q=1273-T w cube.

So if you compare with our formal notation, what we have seen, conductivity k=1, the linear

coefficient  which we had in for the source term alpha=-1 and the constant  term,  the source

description f=1273. So if you substitute these terms in our equations we derived earlier and we

will modify, we will multiply the things a little bit.
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Let us say, remaining equations have been normalised a bit. First equation, you can clearly see,

temperature is specified T1=373. So we have set the diagonal, this main diagonal term as 1.

Remaining  terms  in  this  row  as  0  and  the  right-hand  side  becomes  373  and  so  on,  okay.

Remaining terms that have been normalised, so that they appear close to the ordered 1, that is

why we get this d is 2.00667 and of diagonal terms a take the value 0.9983333 and so on.

So this is our tridiagonal system which we got because we have chosen a linear element and can

be solved using our TDM algorithm and this is a comparison of the solution.
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So exact solution at different nodes, of course at node 1, temperature was specified, so FEM and

FDM,  they  will  give  the  exact  solution  we  have  incorporated  that  exactly  but  you  see  the

percentage  errors  here.  The  percentage  errors  with  FECM are  less  than  0.01% everywhere,

whereas those appreciable error in finite difference formulation and the part of reason was simple

enough that though we have used the same grid size in finite element as well as finite difference

formulation.

In finite differences, the flux boundary condition was incorporated using what we call a first

order accurate backward difference scale. So that leads to the spoiling of this finite differential

solution. The overall accuracy becomes a first-order whereas in finite elements, the accuracy is

of the second order. So finite element solutions you can also compare them with the solutions

which we have discussed earlier of the same problem using finite volume. The 2 solutions are

fairly same, okay.
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So that is what we have observed here that the finite element results using identical grid spacing

are more accurate  than those obtained using FEM and we have outlined the reason, because

when a difference formulation becomes a first-order due to the incorporation of flux boundary

condition. In finite element, the flux boundary condition was incorporated directly or and in what

we call a natural fashion, so there was no approximation involved in the incorporation of the flux

boundary conditions.

So that was the primary reason for the better accuracy of finite element method. Now a brief look

at some guidelines for the computer implementation.
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Now whenever you want to write a finite element code, you will have to first make your choice

of data structures in the same way as we did for finite difference of the finite element. There is

slightly 1 difference here, in the case of a structure finite difference or finite volume, we knew

that we will get what we call multidiagonal structure of the matrix. So we could easily choose

those number of diagonals and store them as 1-dimensional array.

Now in case of finite elements, if you move over to unstructured grid in the 2-dimension or 3-

dimensions, the things will change, the type data structure that would depend on the choice of

our solver, whether we want to use an element by element solver or we want to use general-

purpose solvers like iterative solve like PCG or GMRES and so on and what way we will store

our elemental matrix. So all these things will decide our choice of the data structure in the design

of a finite element code.

Now once of course you have decided in the data structures, the code you must also provide for

the  provision  of  different  types  of  shape  functions.  For  instance,  for  1-dimensional  heat

conduction, I would like you to write a simple finite element program. First use it or write a code

which makes use of leader interpolation functions and write one which makes use of quadratic

interpolation functions. In the case of 1-dimensions though, the things are very simple.

We can  evaluate  the  integrals  analytically  but  what  I  would  encourage  is  that  you  put  the

provision for the shape functions and go for Gaussian quadrature and compare the 2 results. The

results which we would obtain if we make use of analytical integration and the one which we

would obtain from numerical integration. So provide a provision for the numerical integration in

your finite element code.
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So these words, I  would like to put a stop to our discussion on finite  element  method. The

method is very versatile, very capable but also you have to learn it, learn many more things

before you can write a multidimensional finite element code and for further reading, please refer

to the books by Zienkiewicz, Taylor and Zhu or the book by Reddy.

Some details  are  also  available  in  Computation  Fluid  Dynamics  book by Chung but  if  you

looking for the complete solution strategy, it is better to go and have a look at Zienkiewicz' and

Taylor's book, the finite element method, its basis in fundamentals which also provides you some

discussions on the data structures and the storage aspects of finite element matrices.


