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Welcome back to the second lecture  in  module 2 on finite  element  method. In the previous

lecture, we had introduction to finite element and weighted residual formulation, we will next

take a variation formulation, finite element shape functions and numerical integration and then

applications to the scalar transfer problem in next lecture. So, let us have a recap of what we did

in the previous lecture.

We discussed  the  background  and  the  attractive  features  of  finite  element  method,  we also

discussed the basic finite element methodology and we discussed one particular type of finite

element formulation which is most powerful one is called weighted residual formulation.  We

looked at the general formulation of weighted residual method and the weak form which we can

obtain from here.



And what are the major types of schemes which can result from the generic weighted residual

formulation, we then applied a particular variety of weighted residual formulation which is using

finite  element  formulation  called  Galerkin  finite  element  for  Poisson  problems  and  todays

lecture, we would focus primarily on finite element shape functions and numerical integration

but we would also include a variational formulation,  a very very brief look at this particular

methodology.
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And then we will start off with finite element shape functions specifically for one dimensional

problems  and 2  dimensional  problems in  detail  and then  we will  have  a  look  at  numerical

evaluation  of  the integrals  which  occur  in finite  element  analysis.  So,  let  us have a  look at

variational principle, yesterday while looking at the basics finite element method we said, this

starting point was energy minimization for mechanics problems.
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So, if you can minimize potential energy; the potential energy is a function of what is referred to

as a functional and if that can be minimized then that would lead us to a state stable; state of the

system that is to say our solution, so just, what happens for a certain class of problems in physics

it is possible for us to define a scalar quantity, for example potential energy in mechanics, whose

stationarity leads to this says; the solution of the problem.
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That is to say, we have to reach either an extrema; either extrema it could be minima or maxima

this is what we mean by a stationarity here. So, formally we can define this variational principle

as the specification of a scalar functional pi, which is defined by an integral, so pi is integral over



the domain Fx, u, del u/del x + del u/ del y, so on and so forth; d Omega so, here F is an operator,

x is a spatial coordinate.

And u is a dependent variable which you want to solve for plus we might have a surface integral;

it is integral over gamma which is the boundary of the domain omega, yet another functional G

which depends on x, u and the derivatives of u, so this integral leads to a scalar quantity which

we call  popularly called a functional  and popular  symbol,  we use capital  PI.  Now, we seek

solution of the continuum problem u by finding out a function u, which will make this functional

PI stationary with respect to arbitrary changes in delta u.
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So, what we can say that arbitrary variations in delta u, which leads to delta pi = 0, if you can

find  such  a  u  that  u  would  represent  this  solution  of  our  problem.  Now, if  we can  find  a

variational principle  then it  is straightforward to establish an integral  form suitable for finite

element analysis we have already got that integral definition of pi and that is what we can use in

our finite element methodology.

However, please note that in practice it is very difficult to obtain an expression for operators F

and G from the differential equation of the problem, so normally the way we had seen when we

derived  our  conservation  equations  we  derived  it  either  an  integral  form  but  that  did  not



correspond to a variational principle and there were after we obtained a differential form. So,

what we would have most of the time is a differential equation.
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And looking at that differential equation is very difficult for us to formulate or to come up with

the forms for the operators F and G except when our differential equation involves what we call a

linear  operator  that  is  what  we  say  linear  differential  equations.  So,  in  the  case  of  linear

differential equation suppose, we had L was your differential operator and if it were self with

adjoint operator in the differential equation Lu + f = 0.

So, in that case you can look at your maths textbook and will tell you that in such situations, we

can obtain this function or operator F give which is given by u times Lu – 2f and functional

capital pi can be refined as pi = integral over omega of fd omega, we substitute for F that is u

multiplied by Lu – 2f, so now this is our scalar functional, we minimize it and thereby we would

have our finite element formulation. 
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So,  now let  us  have  a  look  at  the  variational  finite  element  formulation.  We have  got  the

functional pi, so that is the one which provides the integral form, this is similar to the weak form

which  you  derived  earlier  using  weighted  residual  formulation,  so  we  have  already  got

something similar to a weak form for finite element formulation and all the people require is now

we would require stationarity of pi with respect to each nodal value which should lead us to the

discrete algebraic system.
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And if pi is quadratic in the proceeding step results in a linear system k = b, which will have

some nice properties  but  before that,  let  us  have a  look at  how we reach at  this  stage.  So,

variational finite element formulation, suppose we have got our functional pi defined, so our



functional is pi and then we will use your finite element approximation, so suppose functional pi

exists.

That is; this we have got a scalar functional pi defined as a function operator F times x, u of x

and so on d omega. Now, what we want in finite element analysis;  we seek an approximate

solution; we seek an approximate solution; solution u ~, that is we will approximate our u of x/ u

~ x and this u ~ x defined in terms of our interpolation functions that is Ni which depend on the

spatial coordinates and the discrete nodal values.

So, u ~ x is summation over i of Nix into ui and our task is it now to determine ui, so functions

note that the functions Nix are known and we have to determine discrete nodal values ui to get

the approximate solution finite element solution of our problem okay. Now, we want to find out

of a solution or we seek a solution which would make pi stationery that is what we seek is at

stationarity of pi; functional PI requires that delta of pi this is equal to zero.
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Now, any variation in delta that can be expressed now in terms of the delta pi, this is given by

summation over i del pi over del ui delta ui because that is the way we have expressed our

approximate solution; my approximate solution depends on these unknown discrete parameter

cui, so this how; the small change in pi can be represented as this. Now, this is what we want to

set as 0 okay.



So, this; let us call this equation as 3 and 3 must hold for arbitrary variation variation delta ui for

each ui. So, that is possible only if the multiplier which we had in this summation is identically

0; delta ui; there could be arbitrary for each i and if we assume that looks for some I, this del pi/

del ui is positive, for some it is negative, so that itself does not hold good okay, though that it is

possible for us to argue that there could be certain variation for certain values of i which are

positive, for other set is negative.

So, we get a summation is equal to 0, but that will not hold good for an arbitrary variation in

each of  ui,  so that  is  why what  we would  require  that  for  stationarity  of  the  functional  for

arbitrary variations in ui, these derivatives delta pi over delta ui, this would be 0 for each i and

this is what gives us our discrete algebraic equations for discrete algebraic equations which we

seek as a part of a finite element formulation.
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And of course, those discrete equations would be in terms of the element and integrals and we

need to evaluate those integrals to get the final discrete system, so the intermediate steps would

be similar to what we earlier looked at various residual analysis, on final discrete system would

be Ku = b or K is system matrix; u is a vector of unknown quantity, b is our right hand side, so

this is Nut shell, the basic variational finite element formulation.
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Now, there is some beautiful features of this variational finite element formulation and one of

these beautiful features is that; if pi is quadratic, then the system of equations which we get from

finite element formulation Ku =b, this K is symmetric and positive definite,  so that gives us

specific advantages in terms of solving the system. In fact, for many of the problems what has

been observed in mechanics is that if there is a variational principle in existence variational finite

element formulation invariably results in a symmetric system matrix.
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This also yet another feature in such situations that is to say that if we have a problem for which

a variational formulation is possible that is to say we can find a functional in such cases, even if

we imply a Galerkin finite element formulation that would also result in a symmetric system, so



that  is  the  reason  why  nowadays  instead  of  trying  to  search  and  formulate  the  variational

functional of a problem.

Most of time we prefer to go with Galerkin finite element formulation (()) (14:48) that if there

were a variational formulation which you was seeking to obtain a symmetric system that we

would anywhere get by using our Galerkin finite element formulation, so we just had a look at

one form there are many generalization of these variation formulations available in the literature

which are called constrained variational principles.
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Some of them are based on Lagrange multipliers and penalty functions, for details please have a

look at  any standard finite  element  book for  instance,  you can  have  a  look at  the book by

Zienkiewicz or Reddy we will  give the full  reference of these books towards the end of the

lecture. There is a yet another category of somewhat similar to variational formulation wherein

we can construct a functional based on least squares approach.

Now, I have just given the sketch of this approach here because this is the one which is used

occasionally in finite element analysis of fluid problems, so what we can do is; instead of trying

to  search  for  a  variational  principle  for  a  given  partial  differential  equation  Lu  = F, if  you

substitute for u, our approximate solution we will get the residual or okay and now let us define a

functional pi bar, which is given by R square d omega.



So, R is our residual, what we have here is square of that residual and to get a solution, we want

to minimize that region, why this is called least squares formulation. So, for details once again I

would encourage you to have a look at the book by Zienkiewicz. Now, let us come back to the

finite element shape functions in todays lecture we are going to focus on some most commonly

used polynomial shape functions. 
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Though, if you look into the finite element books and literatures, there are a variety of finite

element shape functions which have been derived for different physical problems for different

scenarios, for instance; in solid mechanics we have got a set of functions which are used for

plates and shells and so on but we would focus primarily on the most popular shape functions of

polynomial type.

And  please  remember,  the  shape  functions  in  finite  element  analysis  would  depend  on

dimensionality of the problem whether we are dealing with one dimensional problem or two

dimensional problems or three dimensional problems, in each case we will have a different shape

function. They will also depend on type of elements which have used for discretization whether

our elements permit quadratic variation, linear variation and so on.



Or say, for instance we have used in solid mechanics we want to use a plate element or a shell

element and so on. So, what type of element we have used that also dictates the form for shape

function.  Now,  the  shape  functions  must  satisfy  certain  continuity  requirements,  now  this

quantity requirement will depend on the type of formulation which we have used which will

specify that order to which our shape functions must be differentiable.

So,  that  is;  what  we  saw  in  previous  lecture  that  weak  form results  in  a  lower  continuity

requirements or a shape functions, so depending on let us say, if you want to use strong form or

weak form finite element formulation and the order of differential operators in PDE, these two

factors will govern the continuity requirements on the shape functions but there are some basic

properties which our shape functions must satisfy.
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So, 2 basic fundamental property; the first one is called partition of unity that is at any point in

our domain, so if we sum up all the shape functions for that element so, sigma K = 1 to N, NK at

any point in that element, it should sum up to 1. So, that is this property is called partition of

unity. The next is Kronecker delta property that is simply say that our shape functions, say Ni at

node Xk should be equal to delta ik, so if i pertains that particular node, if i=K the shape function

should take a value unity there.
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Otherwise,  it  should evaluate  to  0 at  that  elemental  node.  Now, let  us  have a  look at  some

standard shape functions, we will first discuss the shape functions for one dimensional element.

We will  concentrate  on 2 types;  2  node linear  elements  and 3 node quadratic  elements,  for

description let us switch over to our board, one dimensional shape functions.
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Now, it is customary to define these shape functions in terms of what we call local variables or

natural coordinates, so shape functions are normally defined in terms of a local coordinate which

is usually called natural coordinate. So, how would you find the natural coordinate for a one

dimensional element, so let us say we have got an one dimensional element, the extent of this

element in x direction, the length of this element is l.



Now, the origin of this x coordinate could be anywhere, so for each finite element if we define

our shape function in terms of x, the definitions should change but if you introduce this natural

coordinate we can have identical definition for shape function in each of those elements. So, how

do you find the natural coordinate? We will define the origin of natural coordinate at the centroid

that is the middle point of the element xc, so xc is the midpoint of our finite element.

And we would define just use the symbol xi to denote our natural coordinate, so this natural

coordinate x is defined as x - xc twice of it divided by l. Now, please remember this now xc is

the middle point, so at midpoint the way we have defined it should evaluate to 0, what happens

to the extreme ends? So, in terms of xi, if you draw the same element; the straight again, so our

xy coordinates are 0-1+1.

So, at the extreme right end is very easy to see this part as l/2, so x- xcl/2 twice of that that is l

divided by l that will give us a value +1 and same holds. Similarly, we can see why the natural

coordinate of the node a, should be -1, so this is our definition of natural coordinate for one

dimensional elements.  Now, depending on the number of nodes, we can specify what I have

polynomial variations or shape functions we would like to have. 

So, now let us have a look at two cases; first is what we call two node linear elements. So, we

will start numbering from left, the left most node is numbered as 1 and the rightmost node is

numbered as 2 and the way we have defined our coordinate system, the middle of the element

that is where the origin of xi lies, node 1 has got coordinate -1 and node 2 has got coordinate as

xi=+1, this is xi=-1.
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And associated shape functions in this case we will have 2 shape functions; shape functions N1

subscript 1 say it now, this is associated with the node 1, this would be defined as 1/2 into 1- xi

and N2 is given by 1/2* 1+ xi. Now, you can easily verify the 2 properties, which we have

mandated the shape functions should have okay at any; at any arbitrary point xi in the element,

what happens to this summation of this shape functions?

We have got 1/2 1-xi + 1/2 1+xi, which gives us 1, so these shape functions they do satisfy, so

thus N1 and N2 do represent a partition of unity. Similarly, can you do verify the Kronecker delta

property? Let us see, what happens to Kronecker delta property. N1 at; let us call the coordinates

of node 1 as xi1; N1 x i1, where xi is -1. What is this? This 1/2 * 1-, -1, which is equal to 1 and

what will happen if we evaluate N1 at xi2 = +1? 
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This is 1/2 1-1=0. Now, let us have a look at one more one dimensional element. Let us call it

quadratic 3 node element. Now, if you have got this 3 node element, let us draw our element

diagram; this is centre point which is the original of our local coordinate system xi, the left most

node is numbered as 1, the centre node we will number it as 2, the centre node is at xi2 = 0, xi1 =

-1 and the rightmost node we will number as 3; xi3 = +1.
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Now, the shape functions are N1xi, this is given as 1/2 xi * xi -1, the shape function a link to the

middle node this is given by 1-xi 1+xi and the last one N3xi that is given as 1/2 xi+1 * xi, so

these are shape functions for quadratic one dimensional elements. Now, do this satisfy the two

properties which we require that is our partition of unity, so let us sum them up; sigma Nixi; 1=1,



2, 3 and what do we get? 1/2 xi square – 1/2 + 1 - xi square + 1/2 xi square + xi/2; xi/2 gets

cancelled; now these 2 xi square, these once again will cancel.

So, what we are left with this now is; sigma i Nixi =1, so thus these shape function they do

satisfy this partition of unity property, they also satisfy Kronecker d elta property which we can

easily  see,  for instance;  our N1 at -1 this  is  equal  to 1 but if  you evaluate  N1 at  0,  it  is 0.

Similarly, N1 at +1 is also equal to 0, the same holds good with N2, N2 at -1 is 0, N2 at the node

point 2 is equal to 1 and N2 at the node point 3 is equal to 0.
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Similarly, our N3-1= 0 N30 is also 0 but N3 at the node 3 that is N3 xi =1= 1, so thus these shape

functions our Ni is also satisfy Kronecker delta property. Next, let us have a look at some of the

standard shape functions for two dimensional elements, in two dimensions we can have either

rectangular elements, in the polynomial class we have got two families; Lagrange family and

Serendipity family.
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We will have a look at what are these two families separately and then triangular elements, so

two dimensional elements;  you will first look at rectangular elements, they will be using the

word rectangular, the shape functions can also be used for the curvilinear elements which have

got 4 sides by using what we call isoparametric mapping or these can also can be used for the

quadrilaterals of arbitrary type.

But for the basic definitions, let us stick to that rectangle shape and here again we need to define

our natural coordinates, we need to introduce now our 2 natural coordinates; xi and eta, so if you

are  looking at  our  xy coordinate  system,  let  us  say we have got  a  rectangular  element,  the

centroid of this element that is what would be chosen as the origin of our natural coordinate

system. So the one local coordinate parallel to x that is what we will call as xi, the one parallel to

y direction that would be called eta zero zero okay.

And their definition is very similar to what we had defined earlier for the one dimensional case

that if the extents of this element; length of this rectangular element in x Direction is lx and its

length in y direction is ly, we can easily see the definition of this xi would be defined as twice of

x - xc divided by lx and eta would be defined as twice of y - yc divided by ly. So, this is the basic

definition of our natural coordinates for a rectangular element.



And now in terms  for  these  coordinates,  we will  define  the shape  functions  for  rectangular

elements.  First,  we will have a look at  the elements of Lagranges family, why we call  them

elements of Lagrange family is because of simple reason that the shape functions are defined;

shape functions  are  defined in  terms  of  Lagrange  polynomials  okay, that  is  say  our  typical

Lagrange polynomials is called as L.
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L kn for a one dimensional variable xi, this is defined as a product of i=0 to n, i0 = k x-xi divided

by  xik  –  xi,  so  this  is  a  definition  of  a  Lagrange  polynomial.  Now, in  terms  of  Lagrange

polynomial, the shape functions are defined, so shape functions for a quadratic element; sorry a

quadrilateral or rectangular element can be defined in terms of Lk xi, that is for example, for a

node a.

Or let us use this index alpha, the shape function N of alpha that can be represented as N capital

I, capital J, where this capital I capital J can be used to represent that which side; left side or right

side we can assign the integer indices for these ones. similarly we can also assign the integer

indices for the bottom side and the top side and now this Ni is in fact it represents in or it is

expressed in terms of these Lagrange polynomials; Ni n xi LJ m eta, where this n and m will tell

us that how many number of divisions we have got in that particular direction.



To make it clear, put it more clearly let us define linear elements, so linear Lagrangian element,

now this linear Lagrangian element would have basically 4 nodes at each corner of this rectangle

and this shape function Na can be represented as 1/4 of 1+ xia * xi 1 + eta a * eta where xi a, eta

a are coordinates of node a, so what you can easily see? that these are basically the products of

the shape functions in one dimension.

So, what we had shape function for one dimension; 1/2 1+-xi *xi, so this 1+ or –xi, so this is

what we will have here that xi a is eta a, they can take the values +1 or -1, okay so the shape

functions for the linear Lagrangian element, they are basically product of corresponding linear

shape; one dimensional  shape functions. The same thing can happen in fact we will  have to

repeat the thing as same way.
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If you take higher order elements quadratic or cubic, we take the corresponding dimensional

shape functions  in the two directions  multiply them and we will  get the shape functions for

higher order Lagrangian elements. For details, you can see the book by zienkiewicz or just like to

illustrate one point that relates to the placement of nodes; in the case of linear elements just we

had 4 nodes at the 4 vertices.

But if you take quadratic element, so this is our linear rectangular element, if you take quadratic

rectangular element of Lagrangian type, we will have 3 nodes on each side plus we will have one



node which one sides with the centroid, so this becomes this is a 9 node element. Similarly, if

you want to have cubic one that will have many more interior nodes, so this is cubic element, so

if  you do not  want  these  interior  nodes,  we can go for  what  we call  quadrilateral  elements

quadrilateral or rectangular elements of serendipity family.
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The linear one, of course did not have any node in the middle, so we do not have to worry about

the linear node but if you go for the quadratic one say for instance our cubic ones, we can obtain

the shape functions or we can differentiate shape functions such a way that we do not need any

interior node, so this is our quadratic element of serendipity family. The same as way we can

define our cubic element of the serendipity family.

For details; for detailed description please see the book of Zienkiewicz et al. Now, the shape

functions or for this element would differ depending on where the node is located. So, suppose

we really mean the corner nodes, these are defined the same way as we had earlier had with

slight modification,  so this is 1/4 1+ xia * xi * 1+ eta a * eta and plus a modifier term, so

multiplied a modifier term, so xia xi + eta a eta -1.
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And if we had the mid side nodes or the nodes which are sitting at the centres of each of the

sides, so mid side nodes a slightly different version, so if we have let us say the node which sits

on the sides defined by unless, whose xi coordinate is 0, so then the shape function is defined as

1/2 1- xi square 1+ eta times eta a and if is eta n = 0, which will correspond to two mates or side

nodes.

So, in this case the shape functions Na would be 1/2 1- eta square 1+xi xi a, so in this way you

can find the details of the shape functions for other higher order elements and for the further

description,  we  will  take  up  the  next  familiar  of  elements,  the  rectangular  elements  and

numerical integration in our next lecture. 


