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Application of FVM to Scalar Transport

Welcome to the third lecture in module 06 on Finite Volume Method. The previous lecturers we

had considered the basic introduction to finite volume that is approximation of finite volume

integrals  and interpolations  schemes.  In this  lecture we would focus on application of Finite

Volume Method to Scalar Transport Problems. So let us have a recap of second lecture which we

had earlier.

(Refer Slide Time: 00:55)

So we discussed interpolation matters in particular we had a look at upwind interpolation, linear

interpolation and quadratic upwind interpolation method. We also briefly mentioned about the

interpolation methods, now in this lecture we are going to focus on application of what we learnt

about finite volume formulation to scalar transport problem, and as a model example we would

take 1 dimensional steady state heat conduction problem.
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So outline we will first have a brief look at the implementation of boundary conditions, and we

will just review the characteristic of finite volume algebraic system on a structured grid, and then

we will have detailed look at the derivation and application of the method to 1-D heat conduction

problem, so we will have looked at problems statement finite volume grids which we can use for

this problem, we will discuss the discretization using finite volume method.

And how do we implement boundary conditions with a different grid choices, and then we will

have a brief look at the solution of algebraic system and computer implementation aspects. Now

let us have a look at how do we implement boundary conditions in finite volume method the

things are fairly similar to the way we did the finite differences, now in case of finite volume for

each control volume we get one algebraic equation.
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And the volume integrals are computed for each control volume with that is in the interior or

close  to  the  boundary  in  exactly  the  same  way,  the  boundary conditions  affect  only  the

computations or boundary fluxes for the CV faces which coincide with the domain boundaries,

and these require special treatment in depending on the prescribed boundary conditions.

(Refer Slide Time: 03:01)

And these boundary fluxes must either be known as a specified flux boundary condition or they

can  be  expressed  as  a combination  of  interior  values  and boundary  data,  and  if  we have  a

boundary conditions which involves the gradient of a variable we can use one sided difference

formula in exactly the same manner as well it in a finite difference method. Now a brief look at

the algebraic system which we would get when we apply finite volume discretization.



(Refer Slide Time: 03:28)

So discretization using finite volume it is an algebraic equation for each control volume in terms

of the variable values at its computational node, which would most likely be at the centroid of

this central volume and its neighboring nodes, and this equation would be a linear equation if a

problem is linear or it would be non-linear discrete equation if it is a nonlinear problem. Now let

us have a look at the way we can represent it.

(Refer Slide Time: 04:00)

If we went for a non-linear problem we can represent it as a quasi-linear equation and this quasi-

linear equation for a generic scalar quantity phi for a generic control volume can be represented

as A capital P*phi capital P+ summation over l Al phi l=QP, now here this index P that represents



the computational node which is linked to the CV that is which represents centroid of the control

volume and l represents the neighboring computational nodes which are involved.

Now how many number of computational nodes would be involved that would depend on the

choice of interpolation screens and the choices for if we have used for the evaluation of surface

and volume integrals, in QP would have dumped all the terms which pertain to what we call the

load vector which might come from the sources or from the known boundary conditions. Now

this is equation which we would get for all the control volumes, this equation will be modified

for the control volume which are close to the boundary.

(Refer Slide Time: 05:08)

And if you look at all these one's, now please note that these coefficient Ap and Al they are

functions of the grid size that what is size of finite volume and the material properties in similar

to  the  way we had called  this  P and  its  neighboring  nodes  that  they  form a  computational

molecule if we have used a structured grid in finite volume analysis, the same technology is also

used in finite volume context.

And with these structured grids we would use compass notation, we have already seen it in the

first  lecture  of  on  this  module  that  how  do  we  represent  various  nodes  and  faces  on  any

structured grid in finite volume context.
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Now if we collect all the equations all discrete algebraic equations for all control volumes after

incorporating the effective boundary conditions, we would get a system of algebraic equation

form capital A times capital phi=Q, where capital A would be our coefficient matrix or system

matrix, phi is an vector of unknown nodal values of finite computational nodes, and Q is known

vector. 

Now this vector A once again if you look back an equation for one particular  control volume

these  are contribution coming  from  only  few  nodes  which  are  the  neighbor  nodes  of  the

computational node, so this matrix A is always sparse in fact is this bursty pattern is fairly similar

to that obtained in finite difference method if we have used the structured grid, and would be

fairly  similar  will  be a  banded structure if  we have used an unstructured grid finite  volume

formulation.
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Now let us come to an example problem which we will discuss in detail that how do we apply

finite volume application method to solve a particular problem, so as a template let us say we

take one dimensional heat conduction problem for the sake of simplicity we are going to restrict

ourselves to steady state problem as for the basic discretization technique is concerned it would

be exactly the same.

Even for a time dependent problem the only difference would be in the case of time dependent

problems our discrete finite volume system would be a system of ODEs in time which we can

solve using the time marching scheme, which we had discussed in the previous module okay.

And let us assume that we have got a slab of width L with thermal  conductivity k, and the heat

generation qg. 

If you are looking at the integral form for energy equation that is how it looks like integral over

the surface k gradient of T dot dA+qg d omega is the volume integral which gives us the effect of

the heat generation in the volume=0 or if this is a partial differential equation which we are get k

del  2 T/del  x square +qg=0,  wherein we assumed k to  be constant.  And to obtain a unique

solution for this problem you have to apply the constraints in the form boundary conditions.

So constraints could be in the form of Dirichlet boundary conditions of what we call a specified

temperature at the boundary T=T bar, we can have at some part of the boundary what we called



Neumann boundary condition or specified flux q=q bar, or we can have convective boundary

condition specified in  the boundary q at  the boundary given in terms of the convective heat

transfer coefficient h*T-Ta.
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Now let us have a look at what choices we can make for discretization and how we proceed with

finite volume formulation to solve this problem.

(Refer Slide Time: 09:19)

So let us have a look at on board this finite volume analysis of 1-D heat conduction, so this was

our slab and we will have some boundary condition specified at both ends for timing let us not

put any constraints okay. Now we have got two choices for the finite volume grids, choice one



choose the computational nodes and at end points of the domain we will have computational

nodes.

This  is  a  way similar  to  the  choice  which we had made with  our  standard finite-difference

formulation that this was our domain depending on the number of divisions we will have, we

have chosen our computational nodes, and our control volumes would be taken to be the this mid-

surfaces okay, so these are control volume faces, so for instance this becomes one control volume

similarly, this one would become another control volume and so on.

So this is one choice and remember here at both ends let us call this these ends are x=0 and x=L,

so this would we have got one node at x=0 let us call this node as 1, 2 and so on, so ith node p

and this is the last node, so if you got N divisions the last node would be numbered as N+1

which corresponds to x=L, so this is one particular grid what we call this is our face-centered

grid. We can make yet another choice cell-centered grid.

Now remember as we have discussed earlier the cell-centered grid is used more commonly in

finite volume analysis, so here we have got the domain we will first divided it into cells, first let

us  from  our control  volumes,  and  the  center  of  each control  volume  that  becomes  our

computational node. So we first choice our CVs and then so this hatched portion was our CV, and

these are our computational nodes.

Now let us if you look at 2 things clearly as far as the basic discretization procedure is  concerned

our basic finite volume formulation is concerned that would remain the same, we will take a

particular control  volume,  and we would  apply our  governing integral  equations  to  obtain  a

discrete equation for that control volume. So whether we take a face-centered grid or a cell-

centered grid in both the case the basic formulation would remain the same.

The only difference would be how do we create the boundary conditions? The treatment of the

boundary conditions would be slightly different in the face-centered grid compared to the face

centered grid. For instance we had Dirichlet boundary conditions specified both the ends of the

slab in this face-centered grid where the vertices are coincident with the boundary ends, we get a



very simple equation T1=Ta that becomes our discrete equation at let us say the node 1, and

similarly, TN+1=TB okay.

And  for  imposing  the  flux  boundary condition  we  will  have  to  choose  a  slightly  different

computational volume close to the boundary, these aspects we are going to discuss next, but first

let  us have a look at  the finite volume formulation for a typical  control volume. So we will

choose a discretization with a uniform grid okay, and we will implement our boundary condition

this implementation would depend on the choice of the grid.

And as we will say that for cell-centered grid implementation is very similar to that discussed

earlier with cell-centered finite difference approach. So now let us get a finite volume this grid

equations for a generic computational node or we can say generic finite volume.

(Refer Slide Time: 16:26)

So let us take a generic finite volume its east face, and its west face, the centroid and this is the

computational node let us call it P, if you have taken uniform grid with either option this face-

centered option or cell-centered option the conditional node would be at the center of the finite

volume, let us also draw a dotted line let us denote the neighboring CVs in fact we are interested

in the neighboring computational node, this competition node capital W this computational node

capital E.



And we would now apply our conservation law that is in this case our integral form of the heat

conduction equation to our chosen control volume, so apply heat conduction equation to this

control volume CV the area of the face of let us say this particular west face this area is Aw, the

area of east face is Ae. And in this case note that Ae=Aw same, and what is the volume? Volume

of CV this would be basically A times delta x where delta x is the extent of this control volume in

x direction okay.

So first term was a surface integral K gradient of T dot dA+ we had a volume integral take care

of qg d omega=0, now in one dimensional case now we have got only 2 control surfaces, so this

K dot dA that becomes very simple, so this would become A*K times dT/dx at eastern face-A*K

times dT/dx at the western face+ let us use our surface integral over CV qg d omega=0, and of

course these are area integrals multiplied with the area A.

So here what we have done is we have used our mid-point rule for surface integrals, we can use a

same rule to volume integral, so if we use the mid-point rule for volume integral then we will get

this qg d omega CV=qg bar delta v where qg bar is the value of the qg at the centroid that is at

point P, so you can also put the subscript capital P if you want to be very particular. Now we

have got these two derivatives in the diffusion term dT/dx at and dT/dx at w.

So  let  us  use  central  difference  approximation,  so  central  difference  approximation  of

derivatives, so dT/dx at e this is our east face it can be written in simply in terms of the value of

temperature at eastern nodes e so that becomes TE- value at current computational node TP/delta

x and similarly, the value of derivative at the west face because west face that represents the mid-

point between the computational node P and W, so this is given by TP-TW/delta x okay.

So now let us substitute these approximations in equation 2, so from equations 2 to 4 what do we

get? K we have assumed to be constant let us say K ATE-TP/delta x -K ATP-TW/delta x +q bar P

delta v=0, let us simplify this expression we can divided by K A and multiplied by delta x, and

rearrange the terms, so we will get –TW+2TP-TE=qp bar delta x square/K, so this is the discrete

equation for our chosen interior control volume, so let us call this final equation as our equation

5.



This equation has to be modified a bit let us say first let us account for one particular case where

we have the source term is temperature dependent, so suppose at heat generation term is linearly

dependent on temperature that is we can write this as this qg=qc+ alpha times T, where alpha is

appropriate proportionality constant. So now in this case our average value this qp bar would be

nothing but qc+ alpha times TP okay.

So we can substitute it now in equation 5 let us call this equation as 6, so from 5 and 6 if you

substitute it there and then  collect the TP terms bring it on the left hand side we get –TW+ 2-

alpha delta x square/K times TP-TE=qc delta x square/K, so this is the final form of our final

discrete equation for a finite volume. And now this equation has to be modified by accounting

for the boundary conditions for boundary nodes okay, so that would be the only difference and

that if the implementation would depend on the choice of our finite volume grid.
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So this is our implementation of boundary conditions and we will consider the 2 cases separately,

the  first  one  was  this  face-centered  grid  wherein  this computational  nodes  where  on  the

boundaries that is this was our domain and domain boundaries 0 and L, so the first computational

node was on the boundary. Similarly, if we had N divisions so last computation node which with

numbered as N+1 this also on the boundary.



Now how would we implement different types of boundary conditions, so let us take the case of

Dirichlet BC that its temperature is specified, so if Tx1=Ta, then what happens for the different

equations for our finite volumes, this one control volume which is linked to this boundary node 1

for that we have got a very simple equation, so then for CV linked to node 1, so this was our CV

linked to node 1, we have got a very simple expressions that is T1=Ta let us call this equation as

8 an continuation.

Similarly, we had a boundary condition specified at the last and the right end, which was our

node number N+1 and this  node number N and this  was our CV boundary, so CV of finite

volume linked to the node N+1 that would have a very simple form. Similarly, If temperature is

specified at right end then discrete equation for last CV becomes TN+1=Tb, suppose you have a

specified temperature here is T L =Tb okay.

So in this scenario these are the equations which are to be put in for the control volumes and note

down that these control volumes are half-width delta x/2, so for these control volumes which are

adjacent to a boundary computational nodes. In the case of Dirichlet BC we have got very simple

expression and these 2 equations can be put together with the discrete equation for other control

volumes to obtain our final system and solve it.

Now instead of temperature specified suppose flux was specified, so if Neumann BC that is this

flux BC is specified, then how do we incorporate it? In that case the treatment would be slightly

different, so now let us have a look at our, suppose we are dealing with the left end that is x=0

and here the value of the flux is specified q x=0 suppose let us call it as qa it is given. So we have

got this computational node 1, computational node 2 and so on.

And now this becomes of a CV face and this is the half-width control volume which is linked to

computational node 1, so this is our CV 1 and its width is delta x/2. So now we have to write a

initio equations or we would apply our integral equation to this half-width CV and we would

note down that the flux is given that is this qa=-k dT/dn at x=0 if you take care of the directions.



So this becomes our K times dT/dx for the west face thus, our boundary now coincides with the

west face, this east face of the CV, so this is given as qa. So the equation for governing equation

applied to CV linked to node 1 becomes A K times dT/dx at face e-A K times dT/dx at face w of

course we have we will have to multiply that areas +q bar, where now this q bar is the average

value of the value at the centroid of this control volume*delta v prime=0.

And we have to be careful that what is delta v prime now this delta v prime would be A times

delta x/2, so please be careful about this and in the place of K times dT/dx we would substitute

our qa, so our equation simply becomes K A now dT/dx let us use the central difference scheme

in terms of the values at node 1 and the computational node 2, so we get T2-T1 and please be

aware this is a half-width control volumes, so this is delta x/2-qa+q bar A delta x/2=0.

So let us simplify this expression further, so we get -T1+T2-qa delta x/2 times K+q bar delta x/2

whole square/K=0, on further rearrangement we can write it as T1-T2= q bar delta x square/4K-

qa delta  x/2K, so  now this  is  the  discrete  equation  for  the  first control  volume,  so discrete

equation for CV 1 near left boundary. You can apply exactly the same process or same procedure

to implement if the flux boundary conditions were specified at the right end, so I would leave

that as an exercise to you.
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So implementation of boundary conditions remember we are dealing with this first case of face-

centered finite volume grids and we had this Neumann boundary conditions. So your exercise is

derived the discrete finite volume equation for the CV at right end of the domain if Neumann BC

is specified.   Convective boundary condition in this case can be handled the similar fashion, so

that would leave it with just a comment there.

The convective flux boundary condition can be handled in the same manner  by taking or by

considering half-width CVs linked to the boundary nodes, and I would leave that as yet another

exercise for you. Derive the appropriate discrete equations if convective BCs are specified at

ends of the slab. Next, handling of the cell-centered finite volume is bit different from what we

had seen with the vertex centered or face-centered finite volume grid.
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So the implementation of BCs for cell-centered grids, in fact this concept we have already seen

earlier when we dealt with the cell-centered finite difference formulation, so I would just repeat

the basic approach which we use for implementation of boundary conditions in this case, so this

would happen this we first divide our problem domain in the control volumes and their centroids

now they become our computational node this is our cell-centered grid.

Now if boundary conditions is specified at the ends of the domain how do we account for this?

Now these control volume exclusively linked to the points in the boundary, in fact we have 2



boundary CVs this is our left boundary CV or CV on left boundary and similarly, let us say this

one becomes our CV on right boundary. So in this case what we will do is we will introduce the

concept of a ghost cell okay.

Now this ghost cell can be taken on either side depending on which boundary control volume we

have taken this is what we had discussed, suppose we take the CV towards the left end so this is

our boundary this is our CV and this is computational node P, so we will take a ghost CV and its

centroid becomes what we call let us say in this case this capital W this becomes our ghost CV

and this becomes our ghost node.

And we would now apply the differencing or linear interpolation making use of the values at

these  ghost  points,  this  is  what  we  had  done  earlier  in  cell-centered  finite  difference

implementation, this is the revision of what we had done earlier. So suppose we had Dirichlet

BCs specified at left end, so that is what we have given is T at w that is given as the boundary

conditions Ta, so how do we incorporate it? 

Now what we can do is we can make use the concept of linear interpolation or averaging or we

can say this now T at the west face this is the west face of this control volume, Tw is an average

of TP+TW/2, so take the values divided by 2, so we get their averages, now this is what becomes

Ta.  And now use this  from here we can  get  an expression for  TW that  is  the value  of  the

temperature at the ghost node this becomes 2 times Ta-TP okay.

And substitute this value of capital TW in equation 7 which we have derived for an interior node

for rather we have derived for a generic CV to obtain the modified equation for control volume 1,

we can adapt exactly the same process for the rightmost CV if the temperature were specified, so

this  were the first  case if flux were specified flux BC, then of course we do not have to do

anything we just go back to the beginning and keyword the face that is already known.

Substitute that value in application of the governing equations for this particular control value

and we will get the modified equation for the boundary control volume for, so the flux BC is

straight forward substitute this value this specified flux value in the integral equation, so it is



exactly the same which we have the way we handle it for our face-centered grid it is exactly the

same process nothing to worry about.

If  we had the convective  BCs for convective  flux  is  specified  okay once  again  the  process

remains similar to what we had done with the flux BC go back to our integral equation substitute

that value, and there would be small catch which we will get there we have the value or at the

end point of the domain that is what is involved that face temperature would be involved, and

now the face temperature can be obtained using this straight line everything procedure which we

had used for our Dirichlet boundary conditions.

So I would leave these expressions as an exercise for you, so obtain the discretized equations for

boundary CV for ‘a’ Neumann and ‘b’ convective BCs. I would just again like to remind you that

these expressions will be fairly similar in the form to what we had already derived earlier in

detail when we were dealing with cell-centered finite difference formulation, so that is the reason

why? I have given this as exercise to you.

So now we are done with the derivations of our implementation of a boundary conditions and

once we are done with collect all the equations in this case you can easily observed that each

equation contained the values of two neighboring computational node.
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So we will get what we call a tridiagonal system we have already learnt TVM algorithm, we

have also seen the program based on it, so you can easily use that routine to solve it, now as for

this computer implementation is concerned is almost identical to what we had done in the case of

finite differences, so structured grid finite volume or structural grid finite difference in both the

cases the implementation of the computer program remains almost identical.

So we are not going to have a detailed look at it because you have already seen a detailed design

of  the code okay, so please note  this  similarity  and based on this  I  would like  to  give  you

assignments that we have already discussed in detail how do we design a finite difference code

the  structured  grid  finite  volume code  is  very  similar  to  modified  that code  wherever  the

modifications required the FD code which we discuss in module 3.

And turn  it  into  a  finite  volume code  for  1-D heat conduction  problem,  we  are  also  given

development of a structured finite difference for 2-D problem, so extend that or extend your 1-D

finite volume code into a 2-D code for solving steady heat conduction problems. In the end let us

have a look at the numerical results for a test problem which we had already solved earlier using

finite differences.
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This was the slab of width l=0.5 meter with heat generation. The left end we had this Dirichlet

boundary condition specified that is it was maintained at T=373 Kelvin. The right end of this slab



was heated by a heater with a flux given as 1 Kilowatt per meter square. And the heat generation

in the slap is temperature dependent capital Q this is qg basically = 1273-capital T watt per meter

cube. Conductivity is constant. 

So this same problem we have solved using our finite difference schemes earlier, and the finite

volume formulation which we have just discussed if you implement it this is what you should get

the numerical  results with finite  volume method at  interior  nodes,  this  is  based on the face-

centered  formulation  where  in  the  nodes  are  the computational  nodes  coincide  with  the

boundaries as well. 
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So we have got the values put here at these interior nodes x=0.1, 0.2, 0.3, 0.4 and the last node

0.5. And these temperature values are in this particular column they are the values obtained from

finite  volume formulation this for the exact  solution.  And errors you can just compare these

errors  we have  already got  the  relevant  slides  with  finite  differences,  you can  go back and

compare.

And you can easily say that the results obtained with finite volume formulation or more accurate

compared to finite difference formulations, and the reason was very simple in this case in finite

volume formulation we have used second order accurate schemes everywhere, whereas in the



case of finite differences there was at the boundaries for the flux term we had used a backward

difference approximation which was only first order accurate.
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So  we  will  stop  here,  with  our  discussions  on  finite  volume  method.  And  these  are  our

references, if you want to have for the detailed study of finite volume method please refer to this

books Computational Fluid Dynamics by Chung, or book by Ferziger and Peric and book by

Versteeg and Malalasekara. Specifically, in this introductory course we would not be discussing

finite volume formulation on unstructured grid which are relevant to complex geometries, so for

finite volume method applied to unstructured grid please refer to any one of these books.


