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Lecture - 03
Conservation Laws and Mathematical Preliminaries

Mathematical modeling is the prerequisite for any theoretical or computational analysis of a

flow problem. So we would first have a look at the mathematical modeling of flow problems

in this module. We would specifically have a look at basic conservation laws of physics.

(Refer Slide Time: 00:45)

Next, we will have a look at the notations which we employ in mathematical analysis of flow

problems. Then we will have a look at derivation of governing equations of the flow problem.

The next lecture we will focus on mathematical classification of the governing equations of

the  fluid  flow and  in  the  last  lecture  in  this  module,  we  will  have  a  look  at  boundary

conditions for flow problems.

Let  us  first  start  with  the  1st  lecture  in  this  module,  which  is  conservation  laws  and

mathematical  notations  and  some  theorems,  which  we  would  need  to  derive  the  basic

governing equations of the flow problems.
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The outline of this lecture would be we will first have a look at the basic conservation laws of

fluid mechanics, then mathematical notations, which we adopt in writing the fluid mechanic

equations then we would look at few theorems, which we would use in the derivation of the

governing  equations  specifically  changing  from  one  form  to  another  namely  Gauss

divergence theorem and Reynolds transport theorem.

First what are conservation laws of physics?

(Refer Slide Time: 01:51)

The fundamental conservation laws of any medium whether it is fluid or solid it remains the

same. It is the basic conservation law of mechanics and these are the conservation of mass.

For any system in a non-relativistic framework, the mass of the system remains constant. So



that will be the first law, which we would use to derive an appropriate governing equations

for flow problem.

The next basic law is the conservation of momentum, which essentially equivalent to the

Newton’s second law of motion, which would be the most important law in the fluid flow.

The next one would be conservation of energy again in a non-relativistic framework. This is

essentially the first law of thermodynamics.

(Refer Slide Time: 02:32)

Now these laws they are not sufficient by themselves. They require certain supplementary

equations.  They  are  referred  to  as  constitutive  equations.  For  instance,  we  would  need

equations to relate stress and strain rate in the fluid mechanic problems and stress and strain

relation  for  a  solved mechanics  problem.  Similarly  for diffusion of a  species  or  a scalar

transport, we would need something equivalent to Fick’s law or Fourier’s law.

Then we would also need the equation of the state specifically for compressible fluid flow.
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Next,  let  us  have a look at  the mathematical  notation,  which we commonly  use in  fluid

dynamics  specifically  in  computational  fluid  dynamics.  The  conservation  law  they  will

involve scalar quantities for example temperature, pressure and density, vector quantities for

example  velocity  and forces  and tensor  quantities  like stress  tensor. The commonly  used

notations in CFD are dyadic or vector notation, expanded or component form or Cartesian

tensor notation.

Now they are noticed in which are preferred by the fluid mechanicist or the engineers. There

is  yet  another  notation  which  is  commonly  used  in  research  literature  that  is  by

mathematicians. They do not make any difference whatsoever with regard to the quantities

involved.

All the quantities are taken as if there is a tensor of a specific order and context would make

it clear whether we are referring to a tensor of order 0 that is scalar or tensor of order 1 that is

a vector quantity or tensor of order 2 that is a second order tensor, but engineers they prefer to

adopt different notations for different quantities so that equations become very clear at the

first glance.

So  let  us  have  these  3  notations  which  are  used  by  the  engineers  or  physicist  in  fluid

dynamics one by one. Let us first have a look at what we call dyadic notation. This is also

referred to as a vector notation. In dyadic notation, we would use normal type face for scalar

quantities.
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For example temperature would be denoted by simple italics T, pressure by P, density by rho

and so on. For a vector or tensor quantity, we would use a bold face type in the printed

material and in handwritten material we would use normally an arrow mark or under bars to

denote  the  tensors  of  different  order. For  example,  velocity  vector  would  be denoted  by

simply boldly and stress tensor by bold tau or a bold capital T.

(Refer Slide Time: 05:00)

Now what  are  the  advantages  of  a  dyadic  notation?  The  advantages  are  we  get  a  very

compact form. For example, for Newton’s second law of motion in the vector form we would

simply write F=ma whereas if you are supposed to write it in the component form we would

need 3 separate equations,  Fx=max, Fy=may and Fz=maz if  we have chosen a Cartesian

reference frame.



Whereas in the case of dyadic notation, we just need to write a single simple equation F=ma

which clearly tells us that it is not dependent on the coordinate so that is why this dyadic

notation also referred to as coordinate free form and the physical meaning of terms are very

clear. The capital bold F indicates it is a force and m simple without bold it says this is a

simple scalar quantity mass and bold a that denotes it is a vector quantity acceleration.

So the physical meaning of the terms in equation written in dyadic or vector notation is very

clear, but what are disadvantages? The algebraic manipulations are pretty difficult. We have

to  remember  various  different  formulae  to  manipulate  the  equations  written  in  vector  or

tensor form. Ordering of terms is very important for example, if we have 2 tensor quantities A

and B, A dot B that is dot product of A and B is not the same as B dot A.

So the order of terms is very, very important when we write in dyadic notations and we have

to be very careful in manipulating the equations written in dyadic or vector notation. The next

form is our expanded form which would depend on the choice of the coordinate system that is

to say whether we have chosen a Cartesian reference frame or a cylindrical polar coordinate

system or spherical polar coordinate system.

(Refer Slide Time: 06:48)

The equations are detailed and they are cumbersome to write. At the same time, algebraic

manipulations  are  very easy  to  perform as  each term in the equation  represents  a  scalar

quantity and order of terms in a particular equation they are not really important and for final

numerical  discretization  or  computer  programming,  we would  actually  write  all  the  flow

equations in expanded form.
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The last one which we will have a look at is what we call Cartesian tensor notation. This is

primarily  used  in  manipulation  of  the  different  equations  or  schematic  representation  of

different  algorithms.  Let us have a look at  1 quantity. For instance,  if  we have chosen a

Cartesian  coordinate  system,  velocity  vector  v  would  be  represented  by  3  Cartesian

components u, v and w where i, j and k they denote the unit vectors in x, y and z directions.

Now this could also be written equivalently as v1i1+v2i2+v3i3 whereas i1 represents the unit

vector i at unit vector x direction, i2 represents the unit vector in y direction and i3 represents

the unit vector in z direction. So in fact, in Cartesian tensor notation, we would represent our

coordinate system o, x, y, z as ox1, x2 and x3 and how would you represent a particular

quantity?

We would use case subscripts to represent a tensor of order k. So if we want to represent a

scalar quantity, there is no subscript required, simple italic symbol would do. If you want to

represent a vector quantity, we will use one subscript for instance v subscript i that denotes

the velocity of vector.
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Similarly 2 subscripts they would denote a second order tensor for instance tau subscript ij

indicates a tau is the tensor of order 2. The advantages of the Cartesian tensor notation is we

get the compactness of the vector or dyadic notation and details and ease of manipulation of a

Cartesian component notation since all the terms in a Cartesian tensor notation they are scalar

quantities.

So we can easily manipulate equation written in Cartesian tensor notation. Now there are

certain  conventions  which we need to  be aware of  and we want  to use Cartesian tensor

notation and the very first one is what we call summation convention which is primarily first

order of with Einstein so it is also known as Einstein summation convention. So whenever we

have a repeated index in a term, it implies summation over the range of that index which is 3

in a 3-dimensional space.

Similarly if you are dealing with n dimensional vector space the indices will run from i=1 to

n.
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So if you write for example, ai, bi this would represent the sum over in ai, bi. So in fact ai, bi

it  represents a dot product of 2 vectors a and b. Similarly del vi/del  xi,  this represents a

summation of del vi/del xi that is del v1/del x1+del v2/del x2+del v3/del x3 in 3-dimensional

Cartesian  space.  We would  frequently  need  a  specific  tensor  quantity  which  is  called

Kronecker delta in our manipulations.
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So Kronecker delta is a second order isotropic tensor, which is defined as delta ij=1 if indices

i and j are equal and it is equal to 0 if i and j are not equal. This particular tensor has got a

specific property, which is called substitution property of Kronecker delta that is if delta ij

uj=ui that is the subscript j has been replaced or substituted by the index i. 
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The next important tensor quantity, which is used in Cartesian tensor notation is alternating

tensor or permutation symbol, which is the third order isotropic tensor, which is defined as

epsilon ijk=+1 if ij=123, 231 or 312 that is indices i j and k follow a cyclic order and it is

equal to 0 if any 2 indices are equal, it  is equal to -1 if the indices i j k they follow the

anticyclic order that is ijk=321, 213, or 132.

This alternating tensor we will primarily need in cross product of vectors.

(Refer Slide Time: 11:30)

Now let us have a look at different products, which we can form with 2 vectors and how do

we represent them in Cartesian tensor notation? Suppose let us deal first with scalar or dot

product  in  this  case  the  order  of  terms  is  not  very  important.  So  a  dot  b=b  dot

a=a1b1+a2b2+a3b3, which we can compactly write as ai bi in our Cartesian tensor notation.



Vector product C=a cross b this is written in our Cartesian tensor notation as ci=epsilon ijk aj

bk where ci represents the highest component of vector C and aj and bk are corresponding

components  of  vectors  a  and  b  respectively  and  epsilon  ijk  is  our  permutation  tensor.

Similarly we can also form a tensor product of 2 vectors for instance we have got 2 vectors a

and b, C=ab this we can write indicial notation as Cij=ai bj.
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We would very often use a differential operator, which is called del operator and it is defined

as  del=i  del/del  x+j  del/del  y+k del/del  w where  i  j  and k these  are  unit  vectors  in  the

Cartesian x, y and z directions respectively. In indicial notations or Cartesian tensor notation,

we can write as i subscript i del/del xi. Now this differential operator can be used to form

both a dot product or it can be applied directly to a scalar quantity or any tensor quantity.

For instance, if we take dot product of this del operator with a vector v so del dot v this is

equivalent to del vi/del xi or in expanded form it equates to del v1/del x1+del v2/del x2+del

v3/del x3 where v1, v2 and v3 are the components of vector v in x1, x2 and x3 directions

respectively.
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Now this operator when it is applied to vector v it leads to a tensor quantity which we call

gradient of a vector. For instance, del v subscript ij=del vi/del xj. Now please note that when

it is operated on a vector quantity this gradient operator gives us a tensor of second order.

Similarly if you take divergence of a second order tensor, divergence of tau for instance,

divergence of tau will give us a vector whose highest component will be given by del tau

ij/del xj and please remember here summation is employed over the index j.

So if you look at these 2 equations which on the slide which we can clearly observe is the

divergence operator  decreases  the order  of the tensor  by 1 whereas  the gradient  operator

increases the order of the tensor by 1.
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Now in CFD we would need differential as well as integral forms of the governing equations.

In the derivation of these equations, we will come across volume integrals as well as surface

integrals. So we would need certain mathematical tools so that we can transform the integrals

in  one form to  the integrals  in  another  form.  For  instance,  we would  very often require

transformation of a volume integral into a surface integral.

Now Gauss divergence theorem helps us in this  aspect and what  is  this  theorem? Let us

denote by omega a volume of the continuum medium bounded by a closed surface A and let

Qx be any scalar vector or tensor field. Gauss divergence theorem states that the volume

integral of del Q/del xi that is equal to surface integral of Q.

In particular, if Q are a vector then Gauss divergence theorem becomes so divergence of Q=Q

dot A surface integral over A or we can write this as del Qi/del xi d omega=integral over dAi

Qi. So we can clearly see that right hand side of this equation represents the dot product of

vector Q with the area vector A. Now this theorem can be used to change the volume integral

to surface integral or vice versa. 
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Another theorem which we would need is what is referred to as Reynolds transport theorem.

What is the use of this particular  theorem? The conservation laws of mechanics they are

defined for a system that is a control mass or a closed system whose mass remains constant.

In fluid mechanics though we would prefer what is referred to as Eulerian description in

which we focus on a fixed volume in a space that fixed volume is commonly referred to as

control volume.



Now how do we derive the basic laws with reference to this control volume because the basic

equations are the fundamental conservation laws they are applicable to a system. So Reynolds

transport theorem helps us in this task and it is essentially a version of what we call Leibniz

theorem in mathematics.
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So let us have a look at Reynolds transport theorem. We will differentiate between 2 terms

here,  intensive  property  and  extensive  property  for  any  given  quantity  of  small  phi,  its

extensive property is defined as the volume integral of phi*rho d omega or the small phi since

represents the capital phi for unit mass.

So once we have got this relation between the intrinsic variable small phi and its extensive

counterpart capital phi we can now write Reynolds transport theorem as d capital phi/dt that

is time derivative of capital phi with respect to time for the control mass=del/del t of volume

integral over CV rho small phi d omega+the surface integral with respect to surface of the

control volume rho phi v-vc dot dA.

Now here vc represents the absolute velocity of the control volume or control volume might

be moving in. My innocence what this theorem states is that look rate of change of capital phi

for a system this is sum of 2 components that is rate of change of phi in a control volume,

which we also refer to as temporal derivative+the net flux of phi through the control surfaces.

Now second term on the right hand side is also referred to as the convective term.



We would use Reynolds transport theorem to obtain the governing equations of the fluid flow

for an Eulerian control volume.
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Now let us start of with the very first conservation equation that is mass conservation. In a

non-relativistic framework, the mass of a system is always fixed. Hence the time derivative of

the mass for any system is 0 that is dM/dt CM=0. Now this mass capital M could be defined

as integral  over the volume omega rho*1 d omega.  So thus we can identify the intrinsic

quantity linked with mass as the density rho.

Hence in Reynolds transport theorem, we can put small phi=1 and thereby we can obtain the

integral  form of  the  mass  conservation  equation,  which  is  also  referred  to  as  continuity

equation as the temporal derivative of integral rho d omega+the surface integral of rho v dot

dA=0. So the very first term tells  us that volume integral of the density and its temporal

derivative+the flux of the density*velocity that has to be 0.
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Now this form is referred to the integral form of the continuity equation. We can apply the

Gauss divergence theorem and thereby we can change this integral equation into a differential

equation. So let us first take the case of a fixed control volume that is a control volume does

not change with respect to time so in that case in the first term del/del t this operator can be

taken inside our integral operator.

So the first term of the continuity equation becomes integral/CV del rho/del t+for the second

term which is a surface integral we can apply the Gauss divergence theorem and thereby we

could obtain divergence of rho v d omega integrate over control volume this is equal to 0. We

can combine both of these 2 terms together and thereby we can get a simple integral equation

that is the integral over the control volume of del rho by del t+divergence of rho v=0.

Now this particular equation it holds for any control volume that is to say our choice of the

control volume was arbitrary and this integral is equal to 0 it is only possible if the integrand

is 0 everywhere. So that is why this integral equation leads us in this particular differential

equation that is del rho/del t+divergence of rho v=0. Now this is referred to as the differential

form of continuity equation.

Now differential form of continuity equation contains 2 terms that is first one is derivative of

density with respect to time and the second term is divergence of rho v, now these 2 terms

their summations would be 0 everywhere.
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Now we can write this equation in Cartesian component form as del rho/del t+del of del x of

rho  u+del  of  del  y  of  rho  v+del  of  rho  w/del  z=0.  We can  also  write  this  equation  or

continuity equation in Cartesian tensor notation as del rho/del t+del of rho ui/del xi where ui

denotes our velocity vector. Our next equation would be momentum equation for which we

will start from the Newton’s second law.
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The Newton’s second law of motion says the time rate of change of momentum of a system

that would be equal to the resultant force applied on the system where this P represents the

linear momentum, which can be defined for a system as an integral rho v d omega over the

control volume. Now in this case let us identify what would be the extensive property and

what would be the intensive property for using Reynolds transport theorem?



Clearly from this integral  we can see this  capital  P are the linear  momentum,  which are

extensive quantity and rho*v which is what we had in our definition of extensive property as

v gives us our intensive property for linear momentum so thus we have got small phi=v and if

you put small phi=v in Reynolds transport theorem.

We can obtain a very simple relation that d capital P/dt for a control mass system that is time

rate of change of momentum for a control mass system=del/del t of the volume integral over

the control volume of rho v d omega+the surface integral over the control surface of rho vv

dot dA=FR. The first term refers to that is del/del t of rho v integral over the control volume

this gives us rate of change of the momentum in the control volume.

And the second term that is surface integral of rho vv dA this gives us the rate of efflux of

linear momentum across the control surface. Now please note this vv this is not a simple dot

product of 2 vectors. In fact, vv, v is a vector hence vv denotes a second order tensor. So what

we have got here is rho is a scalar quantity, vv becomes the second order tensor so we have

got the scalar dot product of the second order tensor vv/our area vector dA.
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Now let us have a look at the resultant force for any control volume. The resultant force can

be expressed as some of the surface and body forces that is FR=F subscript S+F subscript B

where subscript S refers to surface force and B refers to the body force. Now the surface

force can be obtained if we knew what would be the stress acting on the surface where stress

were tau which acts on differential element dA.



The dot product of tau with dA would give us the differential force acting on that particular

elemental surface area. This we can integrate over the surface of the control volume to get a

net resultant surface force. Similarly the total body force can be obtained if we knew the body

force per unit mass that is rho B d omega integrate over omega that will give us the total body

force.

Now  this  body  force  normally  arises  because  of  less  gravitational  attraction  or

electromagnetic field or similar long range forces whereas the surface forces they arise from

the contact with different medium or solid boundaries. Now we can substitute this expanded

form of these integrals for the resultant force FR in the pre-equation, which we obtained in

the last slide.

And thereby we would obtain the integral form of momentum equation as del/del t of volume

integral rho v d omega+the surface integral rho vv dot dA=surface integral of tau dot dA+the

volume integral rho B d omega. So this is our integral form of the momentum equation.
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Now this integral form can be converted into a differential equation by again using Gauss

divergence theorem and in this case what we need to do is first we will change the order of

differentiation and integration hereby assuming CV to be a constant control volume that is

constant control volume, which does not change with time. So this particular term will lead

us to volume integral of del rho v/del t d omega+this surface integral can be changed into a

volume integral using Gauss divergence theorem.



This would become volume integral of divergence of rho vv d omega. Similarly this surface

integral tau dot dA becomes volume integral of divergence of tau d omega. This is again a

volume  integral.  Now  all  of  these  were  terms  they  have  been  transformed  into  volume

integral. We can take them on one side and we can write them as simple volume integral and

again we can argue right hand side has become 0 and that can be true only if the integrand

vanishes at every point.

And that argument leads us to our differential form of momentum equation that is del rho

v/del t+divergence of rho vv=divergence of tau+rho v. Now this particular equation was first

derived by the French mathematician Cauchy so this is referred to as Cauchy’s equation of

motion. Now this is equation of motion in the vector form. We can write it as a Cartesian

tensor notation as del/del t of rho vi+del/del x of rho vivj=del tau ij/del x j+rho bi.

Expanded form of momentum equation could be obtained in different coordinate systems.
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Now please note that this particular form we call as conservative form. What do you mean by

conservative form? Here each term in differential equation of the conservation equation is

either a time derivative, divergence or gradient of a function. So if you look carefully here the

first term is the time derivative, the second term is the divergence of rho vv and the next term

that is the first term on right hand side this is the divergence of the stress tensor.

This volume component b or the body force b it can be represented by a gradient of some

scalar  quantity. So this  is again representable as a gradient so this  particular  form of the



momentum equation is referred to as the conservative form of momentum equation. Now we

can change it using the chain rule of differentiation and continuity equation. We can obtain

the non-conservative form of momentum equation, which is given by rho del v/del t+v dot

del v=divergence of tau+rho v.

 

The right hand side has remained the same only changes have been in the left hand side. If

you closely observe this left hand side, the del v/del t this refers to the local change in the

velocity  vector  that  is  local  acceleration,  v  dot  del  v  this  is  referred  to  as  a  convective

acceleration so this whole term in the bracket this is essentially the acceleration term. So

rho*acceleration=divergence of tau+rho*v.

So this is our non-conservative form of momentum equation. In CFD, we primarily focus on

the conservative form of momentum equation.
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Now if you look at the momentum equation carefully we would see one thing very clearly

that this vector equation is essentially a system of 3 equations and how many unknowns we

have got the number of rho would be an unknown, velocity vector is unknown that is we have

got 3 unknowns here and we have got a tensor quantity here, second order tensor tau and tau

would have 9 components.

So you have got more number of unknowns than the number of equation. Total number of

equations are 3 only for rho of course we can get continuity equation so we get 4 equations, 4

equation for 9+4=13 unknowns so there is something missing. The system equations will not



complete and it cannot be used for the mathematical solution of equations. So we need what

we call constitutive models for relating the stress tensor to velocity components rather we

would try to relate the stress tensor to rate of stress tensor in the fluid dynamics.

Now the simplest model is the linear relationship between stress and strain rate. This is used

for Newtonian or Stokesian fluids. For non-Newtonian fluid, stress and strain relationship is

non-linear and there are different forms of the non-linear loss which are available which can

be substituted in momentum equation to be simplified further.
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Now let us have a look at this constitutive relationship for a general fluid the stress tensor tau

can be a function of this strain rate tensor S where S is given by half gradient of v+gradient of

v transpose.  So this  S represents  a strain rate  tensor  and a  general  dependence  could  be

written as tau is a function of S the second derivative of S and so on. Now the presence of

this time derivatives that would take care of the different types of fluids.

For instance, if we had a second order fluid with memory which is also referred to as a visco-

elastic fluid. In that case, the dependence would be only on the stress strain rate tensor S and

is time derivative that is tau would be written as –pI where this I is identity matrix, I scalar

quantity alpha 1, alpha 1*by the stress strain tensor S+alpha 2 times S square+alpha 3 times S

dot.

Now alpha 1, alpha 2 and alpha 3 these represents a typical material properties, which would

be determined empirically by performing experiments for a particular fluid. For a Newtonian



fluid, the dependence is very simple. We have got tau is a linear function of S and in this case

we can use some simple algebraic manipulations to arrive at a very straight forward form for

this stress tensor that is tau is given by –p subscript I+lambda divergence of v I+twice of mu

times S.

Now here these coefficients lambda and mu they are referred to as coefficients of viscosity.

Lambda is called first coefficient of viscosity and mu is referred to as a second coefficient of

viscosity or dynamic viscosity, p is also referred to as thermodynamic pressure.
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Now we have got 2 unknowns in the previous relations lambda and mu. We would like to

simplify this further. So for this Stokes can be the hypothesis that for majority of fluids there

is a relationship that is 3 lambda+2 mu=0. In fact, this 3 lambda+2 mu it is related to what we

call the bulk modulus of a fluid.

So Stokes hypothesized that this particular combination is equal to 0 and this leads to a very

simple form for the momentum equation which is referred to as Navier-Stokes equations.

Now these  equations  were  derived  separately  at  different  points  of  time  by French  man

Navier and the British man Stokes. So they are referred to as jointly by as Navier-Stokes

equations.

And we can write in dyadic form as del of rho v/del t+divergence of rho vv=rho*v-gradient

of p+2 times divergence of (mu)*by S-1/3 divergence of v*identity tensor. Now this equation

holds good irrespective of whether fluid is compressible or incompressible. That is to say



whether its density is constant or variable. Now in case the fluid density were constant that is

to say rho is not a function of time or spatial coordinates.

Then this Navier-Stokes equation can be further simplified and the simplified form of Navier-

stokes equation can be written as del rho/del t+divergence of vv=-1/rho gradient of p+mu

times del square v+b. Please note these 2 equations they are written in vector form and they

can be applied to any coordinate system, but when we want to discretize these equations for

CFD analysis we have to write these equations in appropriate reference frame, which we have

chosen.

We can choose either a Cartesian reference frame or a cylindrical polar coordinate system or

spherical polar coordinate system or curvilinear system and we have to write the expanded

form of either of these two equations separately for each choice of the reference frame.
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The next would be how do we obtain the conservation for an arbitrary scalar quantity? For

instance, if we had a generic scalar or an arbitrary scalar phi, a transport equation for this

generic equation can be written by looking at our momentum equation that is we should have

a time derivative term then we should have what we call a convective term on the left hand

side.

On  the  right  hand  side,  will  have  a  diffusive  term and  a  term which  is  contributed  by

something similar to a body force terms. Now this has been derived or written in analogy

with our momentum equation where we had a time derivative term, a convictive term,  a



surface integral of the effects on surface+whatever effect we can obtain from the body or

volumes generation. So this is our generic transport equation for a scalar quantity phi.

This equation for I scalar quantity phi can also be transformed into a differential equation by

using a same logic that is  we transform first  each of these surface integrals  using Gauss

divergence theorem. For instance, this particular term surface integral of rho phi v dA this

would become volume integral of divergence of rho phi v. Similarly, this surface integral

gamma gradient of phi would become divergence of gamma gradient of phi d omega.

So both of these can be transformed into volume integrals. We can transfer all of these terms

on the right hand side combined together in a single volume integral that is that will read as

volume integral of del rho phi/del t+divergence of rho phi v+(-)divergence of gamma gradient

of phi-rho q phi d omega and right hand side of this integral is equal to 0, which can happen

only if the integral vanishes identically at every point.

And that leads us to differential form of generic transport equation given by del/del t of rho

phi+divergence of rho phi v=-divergence of gamma gradient of phi+q phi.
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Now we can write this vector equation for generic transport equation in indicial notation as

del/del t of rho phi+del/del xj of rho phi vj=del/del xj of gamma del phi/del xj+q phi. Now

here this gamma represents a sort of a diffusion coefficient or diffusivity, q phi represents a

volumetric generation term. The next conservation equation is that of the energy conservation

and the integral form of energy equation can be easily written from our thermodynamics.
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If a small e denotes the specific energy that is energy per unit mass then del/del t of rho e d

omega that is the volume integral of this energy and is time rate of change+rho ev dA a

surface integral this will give us the efflux of energy. So rate of energy generation in the

control volume+efflux of the energy=the total amount of energy which is supplied from the

external sources which could be due to the transfer of heat from the surface or volumetric

heat generation given by capital Q or the generation of heat because of the flow of a viscous

fluid.

So we have got few terms here the first one refers to the time rate of change of specific

energy in the control volume,  the second one refers to the efflux of the energy from the

control volume across the control surface. The first term in the right hand side that tells us the

volumetric heat generation. The next term tells us the heat diffusion across a surface and the

last terms tells us the generation of heat because of the viscous dissipation.

Now once again this integral equation we can transform into a differential equation. We need

to keep doing this because this integral forms would be used for one particular methodology,

which we call  control volume approach whereas for finite difference method or for finite

element  method,  we  need  a  differential  forms  of  the  governing  equations.  So  let  us

interchange the terms here.

That is let  us interchange the differentiation and the integration so this term will  become

integral over the control volume of del rho e/del t. The next term which is the surface integral



we can transform using Gauss divergence theorem into volume integral as divergence of rho

ev d omega.  The next  term the  solid  volume integral,  this  surface  integral  can  be  again

transformed into volume integral as divergence of q d omega.

The next one can be written as divergence of v dot sigma d omega. We can combine these 2

in a single integral equation. All the terms are transferred on the left hand side and the right

hand side of the integral equation will get 0 and then we can again use the logic that volume

integral  can  vanish  only  if  the  integrand  is  identically  0  everywhere  in  the  volume and

thereby we get a simple differential form for energy equation.

And this is our conservative form of energy equation del rho e/del t+divergence of rho e v=Q-

divergence q+divergence of v dot sigma, where sigma is the viscous component of the stress

tensor. Now this is conservative form of equation because the first term is time derivative, the

second term is divergence of something, the third term is a constant function. This term is

divergence of flux and the last term again is divergence.

So all the terms are expressed in the form of either time derivative or divergence of some

quantity  so  that  is  why  we  refer  this  particular  form as  a  conservative  form of  energy

equation.  Now  left  hand  side  can  be  further  simplified.  We can  use  the  chain  rule  of

differentiation this term can be written as del rho/del t into e+rho times del e/del t similarly

this term can also be broke into 2 parts by using chain rule of differentiation.

We can combine these 2 terms, make use of continuity equation and some of the terms will

vanish del rho/del t into e that term will vanish and we get so called non-conservative form of

energy equation given by rho del e/del t+v dot del e=Q-divergence of q+divergence of v dot

sigma. So this is our non-conservative form of energy equation, but let us make it very clear

that  most  of  the  time  specifically  in  finite  volume  formulations  and  finite  element

formulations we would use the conservative form of energy equation.

The equations  we have derived so far they hold good for any fluid whether  the fluid is

compressible irrespective of fluid density, fluid velocity and so on. We can derive different

simplified forms. For instance, all the flow equations can be written in a much simpler form if

even the fluid may be compressible but the flow can be assumed to be incompressible.
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This can happen if the Mach number of the flow is less than 0.3. When the Mach number is

less than 0.3, in that case compressibility effects can be neglected and even for a working

fluid  like  air  or  similar  gases  all  the  equations  which  we  had  the  continuity  equation,

momentum equation or energy equation, density can be assumed to be constant, which will

lead to simpler forms of continuity, momentum and energy equations.

Similarly in sudden situations, the viscosity of the fluid can be assumed to be very small. This

happens at high speed aerospace fluids where the velocities are very high and we can neglect

the contribution of the viscosity to the stress tensor and this simplified form is referred to as

Euler’s equation. Yet another simplified form could be if we assume the fluid to be inviscid

that is we can neglect the viscosity of the fluid as well as any rotationality effect present.

So in this case we need to only worry about a single scalar equations in terms of a scalar

velocity potential and this scalar velocity potential is referred to as this particular equation

Laplace equation for scalar velocity potential is called as potential flow equation. So these are

few simple forms.
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Further simplified forms could be obtained for low Reynolds number flows in which case we

can neglect the time derivative term and this leads to what we call the creeping flow. In this

case, our nonlinear inertial terms on the left hand side momentum equation they vanish so we

get a linear equation. Similarly for buoyancy driven convective flows, we can use what we

call Bousinesq approximation.

Thereby we can assume density to be constant in continuity equation in energy equation as

well as in momentum equation and we would only incorporate a small change, which reflects

the effect of buoyancy in the body forces. So there are various other simplified forms, which

are possible  and which  are utilized  in  approximation  of  different  flow problems.  So this

where we would stop.


