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Welcome  to  module  6  on  Finite  Volume  Method.  We  had  discussed  earlier  one  special

discretizing technique that was based on finite difference method. We had a detailed look at how

do we approximate the derivatives in a partial differential equation at a given point and thereby

obtain  a  discrete  form of  a  continuum problem and  we  also  learnt  different  approximation

techniques, we saw its application to two scalar transport problems.

In the beginning of this course, we are you going to have a look at three prominent discretizing

techniques, i.e., finite difference, finite volume and finite element method. So, today is second

such discretizing technique which we are going to discuss in the next few lectures.

(Refer Slide Time: 01:27)

So, the outline of this module, we would have a look at basics of Finite Volume Method. It

involves approximation of set of integrals which we call Finite Volume Integrals. So, we would

have a look at the approximation techniques for Finite Volume Integrals. The evaluation process

also involves the interpolation of the function values at competition nodes. So, we will see which

of  the  interpolation  techniques  which  are  commonly  used  in  the  context  of  Finite  Volume



Schemes.

Towards end of this module, we will have a look at applications of Finite Volume Method to

scalar transport problems. 

(Refer Slide Time: 02:12)

The first lecture in this series, we will focus on the basics of Finite Volume Method. Now, what

is the basic motivation of Finite Volume Method. If you remember, we learnt in our mathematical

modelling that we have got the basic conservation laws of physics expressed in an integral form

as  how  we  derived  it  starting  from  the  conservation  law  expressed  for  a  system  to  the

corresponding integral form for an arbitrary controlled volume.

So, we have already got a form of equation which is available and the choice of control volume

(())  (02:48)  is  arbitrary.  Can  we  extend  it  further  and  divide  a  problem  domain  into  non-

overlapping set of control volumes; and if we can do that, our conservation laws would be valid

in  each  one  of  those  control  volumes.  Can  we  make  use  this  feature  to  come  up  with  a

discretization scheme which can help solve our problem.

If you can do that, we would not be limited to the Cartesian grids which we require for Finite

Difference Method or the other way which we had for complex geometry for Finite Differences,

we said we have to go for a map or complex problem domain into a conceptual rectangular



competition domain. That mapping was fairly complicated, may not be possible for all set of

geometrics. 

So, now here we have got an opening and look we have got an equation expressed in an integral

form. Now, that integral by the basic law of calculus as it could be broken down into small-small

integrals over smallest subset of Finite Volumes; and in fact, what we can say that conversion

law has to be valid over each one of those small control volumes which could be of arbitrary

shape.

Complex domain can be represented by a union of such non-overlapping control volumes. So,

that  was a starting point.  Further motivation  is  provided by developments  in  Finite  Element

Method. Let us have a brief look at it. On our board, what happened during the early rise of

development.

(Refer Slide Time: 04:46)

So, let us call it inspiration of Finite Volume Method. Now you can recall one more thing from

the fluid mechanics that we had what we call method of integrals finite volume or rather we call

it  the control  volume analysis  in  fluid mechanics  and this  is  on e  method which is  used in

obtaining the design variables or to get a gross overall features of a feed problem. By the end of

1960s, a Finite Element method was well established for structural problems.



So, irrespective of the complexity of solid domain or structural domain, infinite element method

what we can do is we can divide the domain into small-small subdomains of what we call Finite

Elements, and these elements could be of any shape, which could be triangulars or they could be

rectangles or they could be of arbitrary quadrilaterals. So, we can any choice of these infinite

element analysis and to deal with such problems, there were lots of development in unstructured

grid generation.

So, unstructured grid generation techniques were available to decompose our complex problem

domain into a set of non-overlapping finite elements of the chosen type. So, in early 1970s, there

was a group at Imperial led by Professor Brian Spalding whose most famous student is Professor

Pattenkar. They promoted this Finite Volume Method. They said look our integral forms, they

were  expressed  for  an  arbitrary  controlled  volume  that  is  over  which  we  express  our

conservational laws.

(Refer Slide Time: 08:40)

So, our given problem domain can be again divided into smaller subdomains or a smaller control

volumes, similar to the way we do in finite elements. The technology for that is available in a

structured  grid  generation  techniques  and  make  use  of  the  basic  conservation  principles  or

satisfaction of conversation principles at each one of those smaller control volumes.

(Refer Slide Time: 09:32)



So, from the beginning, the Finite Volume Method is based on the approximate solution of the

integral form of the conservation equations. On this integral form, the conservation equation is

available  the  way  we  have  derived  in  our  mathematical  modelling  module  from  the  first

principles, and then what we can do is we have just described, the problem domain is divided

into a set of non-overlapping control volumes.

These control volumes since they were finite volume, they were called finite volumes and we can

now apply conservation equations to each of these finite volumes and take all of them together to

obtain a system of discrete algebraic equations which can be solved in same way as we did in the

case of Finite Difference Method to obtain solution to our problem and these integrals which

occur in application of conservation equations to each of the finite volumes, they are evaluated in

terms of the function values at what we call computational nodes .

But there could be one question here that as we derive our conservation equations in integral

form, so we have the way with us to proceed with application of Finite Volume Method, but

suppose we had the conservation equations in differential form.
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Now, supposed with did not have the integral form of the conservation equation. Suppose we

were given a differential form, del of rho phi over del T+divergence of rho V phi=divergence of

gamma  times  gradient  of  phi+volumetric  generation  right  is  called  Q  phi.  So,  this  is  our

differential equation. Now, if you what to obtain an integral form, we can do the reverse process

of what we followed in the derivation of the differential form of governing equations starting

from integral form.

So, let us integrate this equation over an arbitrary control volume.  CV could be of any shape and

size. So, del rho phi/del T, this is summation here, so we can now write each one of these as

separate integrals. Divergence of gamma times gradient of phi with T omega+volume integral of

CV of Q phi D omega. Now, CV is fixed,  we can now interchange this time derivative and

integral operation for a fixed CV del/del T and integral/CV D omega, the commute.
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So, that is why we can write as integral of rho phi/del TD omega/CV versus time derivative of

rho phi D omega/CV.  Now, these two integrals which involve the divergence operators they

correspond to convective and diffuse reflexes respectively. Now, these can be transformed using

Gauss’s Divergence Theorem. So, Gauss’s Divergence Theorem gives us that integral/CV of the

term divergence of rho V phi D omega. 

This is equal to the surface integral of rho phi V dot DA with control surface and similarly

divergence of comma, gradient of phi, D omega/CV. This is equal to this surface integral gamma

times gradient of phi dot DA. So, if you substitute of these equation 3, 4, and 5*2. So, substitute

3, 4, 5*equation 2, then what do we get. Del/del DF rho phi D omega/CV+surface integral/CS of

rho phi V dot DA=Surface integral/CS of gamma gradient of phi dot DA+volume integral of CV

of Q phi D omega. 

So, now this is the integral form required for Finite Volume analysis. So, if we have the integral

form per se available with us, that is fine. If not, if you only had the partial differential equation

given to us in the form of equation 1, we can take this partial differential equation, convert it into

a conservative form, and then integrated over a controlled volume to obtain the integral form of

the conservation equation suitable for Finite Volume analysis.
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Okay, now let us see what are the attractive features of Finite Volume Method. Now, what we

saw from the very beginning that look we can now have any type of decomposition of a problem

domain, that is why the Finite Volume Method can accommodate any type of grid and hence it is

naturally suited for complex geometries.

(Refer Slide Time: 17:49)

This  explains  its  popularity  for  commercial  CFD packages.  You take  any  commercial  CFD

packages Fluent or Star-CD or similar softwares, they are all based on Finite Volume formulation

because they must cater to the industrial problems which are defined in complex geometries. The

advantage  in  unstructured  gird  generation  method  they  have  made  the  application  of  Finite

Volume to flow problems in arbitrary complex geometries very simple.



Similarly, for large-scale flow problems which ought to be sold on parallel machines, there are

mesh-partitioning techniques developed for finite element analysis. These can be applied as such

to finite volume grids to make a finite volume code run on a parallel machine. So, these two

developments,  development  in  unstructured  grid  generation  method  and  mesh-partitioning

techniques which were originally developed for Finite Element Method.

They can be directly used in Finite Volume Method and they have contributed greatly to the

popularity of Finite Volume Method for solving flow problems in complex geometries. That is

the reason the why the industrial strength, commercial CFD packages are based on Finite Volume

Method wherein we can import a mess which is generated using an unstructured grid generator

for finite element probe analysis and solve our problem. 

Now, let us have a brief look at the overall solution process which is adopted in Finite Volume

Method. We have already see part of it. So, first part of the solution process using any discretize

scheme, whether it is finite difference, finite element or Finite Volume Method, discretize the

solution domain by a grid or a mesh.

(Refer Slide Time: 20:12)

So, this is what we will do in the case of Finite Volume Method, discretize the solution domain

by a grid, i.e., set of finite volumes and we have to define what we call computational nodes at



which our problem variables are to be evaluated. Now, this computational nodes, they need not

coincide with the vertices or the corners of the finite volumes which we will see shortly. Now,

once we have done this discretization.

The next step is apply the integral form of conservation law to each finite volume. Now, you

have already seen,  there are  two types  of  integral  involved.  There  are  surface  integrals  and

volume integrals  which are in terms of our unknown variable.  So, we cannot evaluate  those

interiors exactly. So, what we need to do is, we have got to approximate those integrals. So,

approximate the surface and volume integrals using appropriate quadrature formulae in terms of

the function values at computational nodes. 

Because these are the once which are of interest to us in our solution process, we want to obtain

the function value at computational nodes and in terms of these values, we would approximate

the surface as well as volume integrals.

(Refer Slide Time: 21:36)

So, once we do that we would be able to convert the integral form of conservation laws applied

to finite volume into a discrete algebraic equation, and once that is done, all that we need to do is

collect  algebraic  equation for all  finite  volumes to obtain a system of algebraic  equations in

terms of an unknown values of the variable at computational nodes and depending on the nature

of that system, we can use a linear solver or a non-linear solver. 



So, all that we need to do is solve the resulting set of equations to obtain values of the variable at

the computational nodes and if we want to obtain what we call dependent variables, for instance

the ones which are defined in terms of gradients of basic variables that can be done at the post-

processing styles. So, if you look back to what the way we discussed the solution process for

finite differences, the similarities are obvious. 

In fact, the last step would be the same for finite difference or finite volume or finite element

method. It is only the first three steps which might differ from one discretization procedure to

another.  Now, let  us  have  a  brief  look  at  the  basic  types  of  finite  volume  grids  which  are

employed. Now, here what we mean by grids is not what type of unstructured or structured grids

we are going to use.

This classification is based on (()) (22:56) the computational nodes. So, there are two common

approaches to finite volume discretization basically to the choice of computational nodes.

(Refer Slide Time: 23:12)

The first one is what we call the cell-centered approach. In cell-centered approach what do we

do, the CVs are defined by a suitable  grid and computational  nodes are assigned at  the CV

centre. The second approach is what we call face-centered approach. Now, here what we do is we

chose the nodal locations first,  chose our computational nodes and CVs are then constructed



around them, so that the CV faces lie midway between the nodes.

But there is one limitation that this method can be used only with structured grids. Now, let us

have a geometric look at both these approaches, get back to the board and see both of these

approaches.

(Refer Slide Time: 24:09)

The first one is cell-centered grid, finite volume grid. So, whatever you problem domain might

be. Suppose for the sake of simplicity let us take one rectangular domain, discretize it into a set

of  finite  volumes.  Suppose we have taken these  rectangular  finite  volumes.  Now, chose  the

centroid of each one of these.  The centroids  are  the ones which are now our computational

nodes. So, as you can see this process is fairly simple.

It is applicable to not just the structured grid. Suppose, we have a unstructured gird over a fairly

complex arbitrary domain and we had used an unstructured mesh generator to divide it into a

collection  of  non-overlapping  finite  volumes  which  could  be  triangular,  which  could  be

rectangular. Now, these finite volumes could be of arbitrary shape generated using our favourite

unstructured mesh generator program.

We can have a collection of elements of any type. Now, to define our grid, what we need to do is

take any shape and just find out where the centroid is. Now finding centroid of a geometric shape



is a fairly straightforward operation because we know the coordinates of the vertices and in terms

of the vertex coordinates, we can easily determine what would be the centroid of these cells,

okay. So, generating a cell-centered finite volume grid is a fairly straightforward.

So, we will have a look at two examples; one on structured mesh and another one in the case of

unstructured mesh. Now, let us have a look at the second one. Second one, we said look we are

going to now define our computational nodes first.

(Refer Slide Time: 27:48)

So, let us say this is our choice of the computational nodes and next what we do, draw the mid

planes. For instance, between two for the time being, connect these with dotted lines. We need to

find out the mid planes between these nodes which will define our control volumes surfaces. So,

this is one of the mid plane, this is mid plane here. Similarly, mid plane between these two. So,

these are the mid planes. 

Now, the intersection of these surfaces that is what will give us the finite volume. For instance, if

you look at this particular node. Now, these are the corresponding finite volume. Now, you can

clearly see in this particular figure or its adjoining finite volume, the computational node is not at

the centroid of our finite volume. So, this is our face-centered arrangement and you can clearly

see that we can generate such faces which will intersect and lead us to non-overlapping finite

volumes only if our nodal arrangements were in a structured fashion.



So,  this  face-centered  approach  can  be  utilised  only  for  structured  grids.  The  cell-centered

approach can be used for both structured as well as unstructured finite volume formulations.

Now, one more thing which we can say here, let us go back to our structured grid case. Let us

take one computational node. The value at this particular computational node that would in a

sense represent the average over the finite volume.

So, thereby what we expect is that the representation of our unknown variable can be done to a

much  greater  accuracy  in  the  case  of  cell-centered  finite  volume  approach.  But  in  our

formulation of our integral equation, we need some surface integrals where we need to evaluate

certain  fluxes  which  are  involved  in  gradient  terms.  So,  if  look  at  the  evaluation  of  those

gradients, they would involve the derivatives.

Derivatives  can be obtained at  the cell  faces  with greater  accuracy in  the case of  our face-

centered approach because now they have got two computational grids and the face-centered at

that particular point is midway between the two. So, we can use very accurate central difference

approximation for evaluation  of derivative  at  this  face centre.  But never this  because of the

versatility  of the cell-centered  approach that  it  can be used for both unstructured as well  as

structured grids.

The cell-centered approach is the one which is used more commonly. So, let us summary of what

we just discussed.
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A cell-centered nodal value represents the mean over the control volume to a high accuracy than

face-centered  approach;  however,  CDS  approximation  of  derivatives  at  CV faces  are  more

accurate in face-centered approach. We have already seen the cell-centered approach can be used

with structured or unstructured grids whereas the face-centered approach can be used only with

structured grids, hence most of the time it is cell-centered approach which is used. 

So, this cell-centered approach is more commonly used in finite volume formations.

(Refer Slide Time: 32:44)

Next, we are dealing with structured grids in finite volume and also it also be used on notation

fairly similar to what we had already seen earlier in the case of finite difference method when we



define our computational molecule, we use what we call a compass notation. So, this compass

notation can also be used for structured Cartesian in finite volume grids and in the case of finite

volume formulation, we will have two sets of things which we need to look carefully.

We have got  our  computational  nodes.  So,  computational  nodes  are  denoted  by  upper  case

letters, the P is our central node or the centroid of the finite volume of interest to us, E is the

eastern neighbour node, W is the western neighbour node, N is northern node, S is southern

node, T top, B bottom node, and so on. The plane faces, i.e., the faces between let us say the

computational node P and E, the face for control volume or finite volume which lies between

nodes P and E that is denoted by a lower case letter e.

So,  similarly,  rest  of  the  cell  faces,  we  use  the  corresponding  symbols  depending  on  the

directions. So, plane faces denoted by lower case letters corresponding to their directions by e, w,

n, t and b with respect to the central node. To explain it more clearly, let us have a look at the 2D

situation  for  a  compass  notation.   So,  let  us  first  draw  a  structured  grid  including  some

extractions in 2D. So, x direction and y direction.

Suppose,  this  is  our  central  finite  volume with reference  to  which  we want  to  illustrate  our

compass notation. So, the centroid of this finite volume, that is what we will denote by P and the

corresponding faces is XI, XI+1, XI-1. Similarly, this is YJ, YJ+1, XI+2, YJ +2 and so on. The

computational nodes to the right which is in eastern direction with respect to it be viewed use a

symbol E. The computational node on west that would be denoted by symbol W.

If we had (()) (36:13) further, the nodes to the east of this would use two capital letters EE and so

on. Similarly, in the Y direction, the node in the positive Y directions will be called the northern

node.  This  becomes  NE,  then  is  computational  node  NW. In  negative  Y direction  towards

southern side immediately to next, this becomes computational node S. This is computational

node SW, SE, so it will become SEE and EE and so on.

Now, let us look at the faces. The finite volume face between the nodes P and E, i.e., to the east

of P that would be denoted by symbol e, s, w, n and so on. If we had a three-dimensional thing



with one towards top of it, that node would be represented by symbol T and the face between P

and T that would be denoted by symbol t and so on. So, this is our compass notation which

would be used with structured finite volume grid.

In the case of unstructured finite volume grid, we would go back to the lessons which we would

learn from finite element method. We would use the element connectivity in a state to denote

these faces and surfaces.

(Refer Slide Time: 38:13)

Now, next let us have at the approximations which are involved in finite volume formulation. So,

what we saw in the integral form of conservation law rehab. We have both surface and volume

integrals and these integrals involve unknown function values; and hence, we cannot evaluate

them exactly. In fact, they cannot be evaluated because they are in terms of unknown function

values. 

So, for finite volume solution, what do we do. We will assume that our unknown function is a

specified at computational nodes and use the function values at computational nodes to obtain an

approximation for these integrals  using appropriate  quadrature formulae.  So,  now let  us first

have a look at the schemes for the surface integral. How do we approximate the surface integral.
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Now, let us take a generic function F and we want to find the net flux through the CV boundary.

This is sum of integrals  over CV faces. So, integral  of SFDS=summation/K integral/SKFDS

where  SK is  one  particular  face  of  volume  or  finite  volume.  Now, here  our  F  could  be  a

component of a convective flux or a diffusive flux in the direction normal to the control volume

face. So, if we can obtain a quadrature formula for one of these faces. 

Let us say, K=E, i.e., eastern face. We can derive derived the formulas for rest of the faces as

well. So, now let us take eastern face as our explain face.

(Refer Slide Time: 40:13)

So, suppose you want to calculate the integral exactly, then we require F everywhere on the



surface of the eastern face, SE. However, this information is not available. In fact, where we

know in terms of computational nodes values, that is only specified at the computational nodes.

So, we have to obtain an approximation for this F. So, to obtain an approximate value of the

integral, we have to use what we call two levels of approximation.

The first one is approximate the integral in terms of the variable value at one or more locations

on this cell face SE, i.e., the first step which we have to perform. Now, that value itself would be

unknown. So, that cell-face value has to be approximated in terms of the nodal values because

nodal values are the ones which we are going to solve for. Those are available and those are the

ones which will come in a final discrete algebraic equation.

So, now let us approximate the cell-face values in terms of our values at computational nodes or

CV centre values. So, these are two levels of approximations which would be involved in the

evaluation of all the integrals. So, we will first have a look at the first approximation that how do

we approximate the integral in terms of the values of variable F at one or more locations on the

cell face.

(Refer Slide Time: 41:51)

The  first  approximation  scheme is  called  midpoint  rule.  It  looks  extremely  simple  but  it  is

extremely useful and powerful. This is the one which is used almost exclusively in unstructured

finite volume codes. So, approximate the integral as the product of the integrand at cell face



centre and the cell face area, i.e., integral of FDS at this face SC can be approximated as the

value of F at the centre of this face which we will denote but f subscript e multiplied by the area

of the face.

So, even this simple approximation, it is of second-order accuracy. If value of F is known at the

location E where this E denotes the centre of the face SE. So, if you want to preserve the second-

order accuracy, we have to obtain FE in terms of the values at computational nodes to at least

second order accuracy and how would we do this. This part we will have a detailed look in our

next lecture wherein we will discussed different interpolation schemes.

Now, the so-called very simple midpoint rule, it is widely used in 2D as well as in 3D. In fact, in

3D  unstructured  formulations,  this  is  the  scheme  of  choice.  Next,  could  be  that  for  two-

dimensional  problems,  we can use Trapezoid rule which will  require the values  of F at  CV

corners and this is given by integral FDS is approximately=S/2 FNE+FSE. Basically, what do we

do is that  we want to approximate this  value over the cell  face as an average of FNE+FSE

multiply that by area, this what would give us the value of this surface integral.

If you want a higher-order accuracy, Trapezoid scheme has again got the second-order accuracy.

If you want a higher-order scheme in two-dimensional, we can use what we call Simpson's rule.
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So,  it  provides  a  fourth-order  approximation  and  here  we  will  have  values  at  three  points

involved. The function values at north-eastern point, north-eastern corner, the centre of the face

E and south-eastern corner. So, in terms of these values, the integral is given by integral SE FDS

is SC/6. Value of F at north-eastern corner plus 4 times value of F at the centre point of the face

plus the value of F at the south-eastern corner.

Now, the FNE, FE and FSE these would have to be calculated using the nodal values at the

computational nodes. So, if you want to preserve the fourth-order accuracy of the Simpson’s rule

formula, we have to evaluate FE, FNE and FSE with at least fourth-order accuracy. So, in 2D yes

we can have fairly good amount in interpolation formula, but in 3D we would find the Simpson’s

rule to be too demanding to use. So, we will stick to a midpoint rule in most of three-dimensional

finite volume analysis.

(Refer Slide Time: 45:35)

Next, is approximation of a volume integrals because we had two integrals in our conservation

rule  which  involved  volume  integrals.  So,  the  most  popular  and  the  simplest  method  of

evaluation  of  volume  integrals  again  our  midpoint  rule,  i.e.,  take  the  value  at  the  centroid

multiply that by the volume and that gives us the approximate value of the integral which we

denote by QP the integral of QD omega.

So, this is approximately equal to Q bar delta omega and this is equivalent to Q bar delta omega



where Q bar is an average value over the cell and it can be approximated as value of Q at the

centroid of the cell multiplied by the volume the cell. Now, once again, the simple approximation

scheme has got second-order accuracy and in fact it would lead to exact value of this integral if

Q were constant or linear.

So, once again I would like to emphasize that this particular formula which looks utterly simple

is the one which is used very widely in finite volume analysis. But suppose you are interested in

higher-order methods and if you want to develop fairly complicated code, yes you can do that.

(Refer Slide Time: 47:02)

You can obtain higher-order approximation of the volume integrals. In terms of the value of Q at

more locations than just the central of the CV and these values can be obtained by interpolating

the nodal values or we can use the shape functions very similar to what we will see in our finite

element module later on. 
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For instance, let us say we are dealing with 2D volume integral which is simply an area integral.

So, we can use a bi-quadratic shape function for approximation of variable Q. QXY can be given

in terms of quadratic values. So, A0+A1X+A2Y+A3X square+A4Y square+A5XY+A6X square

Y and so on. So, now these coefficients which you have got A0 to A8, they are determined by

fitting the function to the function value at nine locations.

We have got these nine unknowns, so we will fit them at nine locations and we can obtain the

value of these coefficients in terms of the nodal values of the function.
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On a Cartesian grid, if perform the integration, you will get a simplified form that QP is given by



delta X*delta Y [A0+A3/12 delta X square+A4/12 delta Y square+A8/144 delta X square delta Y

square], and if we had a uniform Cartesian grid, the equation becomes even simpler.

(Refer Slide Time: 48:41)

So,  it  can be reduced to  this  form.  So,  QP=QD omega that  is  approximately=delta  X delta

Y/36[16Q at P+4 times Q at N+Q at S+Q at W+Q at E]. So, Q n, s, w, e, they are the values with

respect to face centres plus Q at north-eastern corner plus Q at north-eastern corner plus Q at

south-western corner and Q at south-eastern corner.

You can easily appreciate that obtaining each one of these in terms of the (()) (49:19) coordinates

would fairly involve task because if you want to retain the fourth-order accuracy of this formula,

we have to approximate each one of these Q values to at least fourth-order accuracy which is not

a main task.  So, in practical  analysis,  we would basically  restrict  ourselves to midpoint  rule

integration.

So, this is where we would stop in this lecture. In the next picture we will have a look at the

interpolation schemes whereby we obtain the values of variables at face centres of the corners in

terms of the nodal variables.
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In the meanwhile, if you are interested, you can look at these references, book by Chung. It also

gives you some details about Finite Volume Methods. Similarly book of Ferziger and Peric, it

contains two chapters on Finite Volume Analysis and there are two books which are exclusively

devoted to Finite Volume Method by Versteeg and Malalasekera’s book. This is introduction to

CFD based on Finite Volume Method.

Similarly, you can also pick up the classic book of (()) (50:29) anchor on CFD which is again

based on Finite Volume Method.


