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Lecture – 27
Applications to Unsteady Transport Problems

Welcome, to the last lecture in Module 5 on Time Integration Techniques. In this lecture we shall

focus on the application of the time integration schemes which we learnt in the previous lectures

to unsteady transport problems. So let us have a recapitulation of what we did in the last lecture.

We discussed multilevel methods for time integration of initial value problems.
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Then we looked at predictor corrector methods which included Runge Kutta methods. We also

looked at few methods which we can derive using finite difference approximation of the time

durative. Now let us apply a sample of these schemes to generic transport equation. So that is

what  we  will  focus  on  this  lecture  application  of  time  integration  techniques  to  unsteady

transport problems.
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So we will have a look at how do we apply these schemes which you learnt from initial value

problems for time integration generic transport equation. You will look at application of explicit

methods  to  both  diffusion  problem and  one-dimensional  advection  diffusion  problem.  Their

extension  to  multidimensional  problems  is  fairly  straightforward  and  will  also  outline  the

application of implicit methods to diffusion and advection diffusion problems.
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Let us have a look at our generic transport equation for a generic scalar phi. So let us recall the

governing differential equation which we had obtained for the transport of scalar phi. We had the

time  derivative  term  del  of  rho,phi/del  T+  this  convicted  term  divergences  of  rho  V

phi=divergences of gamma times gradient phi this was for the diffusive term plus the last term



was our source term, Q dot phi.

Now what we can do is we can try and rewrite it in terms of or in the form fairly similar to that

of an initial value problems by keeping the time derivative on one side, transfer the remaining

terms on right hand side that is say we will rewrite it as del rho phi/del T=-divergence of rho phi

V+ divergence of gamma times gradient phi+Q phi dot. Now this right hand side is basically our

generic function F which we have increased in the RHS of an initial value problem F T gamma

phi T. 

So on the left hand side we have got this time derivative and on the right hand side we have got a

function which depends on t and phi t. So now we can use any time integration scheme which

you have learnt  in the previous two lectures  for integration of initial  value problem for this

generic  transport  equation and we have to be just  careful  how do we evaluate  this  f t  phi t

because it involves these divergences terms. 

So they have to be evaluated at appropriate times step and these derivatives ought to be replaced

by corresponding finite difference approximation.
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Now if you use an explicit method everything in the right hand side is evaluated only at times for

which solution phi this already known and if you use an implicit method the discretized right



hand side would involve values at  new time level  which would result  in a system algebraic

equations which must be solved to obtain the solution at new time level. So now there is a trade

off, if you want to use an explicit method the evaluation per time step is very fast but you have

already learned there is some stability concentrations which limit the value of delta T which we

can use.
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So weather we choose an explicit method or an impressive method this would depend on the

objective for numerical symbolization and the nature of the problem which would dictate the

stability requirements. Let us elaborate these things further.
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Suppose we want to obtain steady state solution that is our primary objective we have got an

unsteady heat conduction problem or an advection diffusion problem but what we are ultimately

interested  in  is  obtaining what  happens at  T=T infinity  that  is  state  what  is  the steady-state

solution. So now in this case if you chosen an explicit method we would be forced to use small

valuable  of  delta  T  because  of  stability  considerations.  So  we  will  have  to  perform  or

competitions for many many times steps. 

So in such situation implicit method might be preferred which allow last delta T because there is

no constant (()) (05:28) imposed on delta T so suppose if you use an implicit backward Euler

method so we can use pretty large value time step and we can obtain the steady-state fairly easily

though at each time step we have to solve the system of equations. So that is why in general if

we have to obtain steady-state solution that is our primary objective, in CFT we prefer implicit

methods.

On the hand if you want accurate time history then the choice of delta t would be dictated by the

accuracy  requirements.   So  as  you know that  smaller  delta  t  more  accurate  would  be  your

solution, so it may so happen that this accuracy requirement forces us to take a delta t which is

fairly small and it is small enough to meet the stability condition for an explicit method. So, in

this  case it  does not make much sense to solve a systemic (()) (06:24) at  each time step by

choosing an implicit method, we should instead go by an explicit method.

And this is one such case where for instance if you want to perform large eddy simulation or

direct numerical simulation of turbulent flows these require accurate time history that we have to

obtain our solution at each time step very accurately for velocity field as well as pressure field as

since in such cases we prefer explicit methods of Adams-Bashforth or Runge-Kutta family.
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Now let us have a look at application of explicit Euler method first to heat conduction and then

we will discuss its application to the advection diffusion problem.  We will also discuss briefly

about  the  stability  of  different  schemes,  explicit  schemes  in  particular.  So  unsteady  heat

conduction equation suppose we assume that material properties are constant that is we have got

constant rho CP and thermal conductivity case.

In that case we can dump everything in our parameter which we call thermal diffusivity. So del

capital T/del T where capital T is our temperature=kappa times delta T/del x square. For the time

being we have ignored the source term, if you want we can just put it does not really affect time

integration procedure or the stability of the scheme. So now for the sake of simplicity of the

formula we have just noted down the case where there is no source term.

Note down here that kappa is thermal diffusivity. Now let us use our explicit Eula method. So

capital  T  and  +1=capital  TN+  kappa  times  delta  T.  Del  2phi  over  del  x  square,  now  this

derivative  has  to  be  evaluated  at  the  known  time  instant  and  now  we  should  choose  an

appropriate  finite  difference  approximation  to  this  second-order  derivative  with  a  special

coordinate x.
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So suppose we choose central different scheme which is called CDS for the diffusion term that is

delta  T over  del  x  square so the  resulting  scheme is  popularly  called  FTCS, Forward Time

Central Space. So this is (()) (08:50) is forward Eula time and central difference scheme space

and if you chose a uniform grid then the discrete equation is simply this TIN+1=TIN+ kappa

times delta T. The terms in the brackets [TI+1N+TI-1 at  N-2TIN/delta  x square],  this  is our

central difference approximation for the second-order derivative and time.

And note down this particular scheme it is first order accurate on time (()) (09:24) would be first-

order because we have used forward Eula method which is first order accurate in time and we

have used central difference approximation in space so that is why its accuracy or (()) (09:37) in

a space would be of the order delta x square. So this FTCS scheme it is first-order accurate in

time and second-order accurate in space.
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Now let us introduce a non dimensional which would call diffusion number D to simplify our

expressions so D is kappa delta t/delta x square. We can rewrite it as delta t/delta x square/k. So

on the numerator what we have got, this is our time step and this delta x square/k, this would

again give us the time scale. 

So now this particular time scale it gives us what we call characteristic diffusion time that is the

time which would be required for transmission of a disturbance by diffusion. So this diffusion

number is the ratio of time step to the characteristic diffusion term. So in terms of this non-

dimensional parameter our algorithm can be written in a very simple form.
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So explicit FTCS algorithm for 1D heat conduction equation can be written as TIN+1=1-2D TI at

N+D times T of I+1N+D times T at the grid point I-1 evaluated at time level N. Now let us save

the stability of this algorithm we have already seen the accuracy aspect and stability conditions

can be obtained with Von Neumann method or by requiring the coefficients of old nodal value

must be positive.

This is a physical requirement if you look at this formula, on the right hand side we have got one

1-2D, the coefficient of TIN, the remaining ones TI+1 and TI-1 their coefficient is D which is a

positive number. Now if you want a similar sort of contribution from all the three nodes at a

future  time  instant,  the contribution  coming from each grid  point  I,  I+1,  I-1 that  should  be

positive otherwise that might lead to oscillation or instability in the solution.

So this one of the requirement or one of the way which we can look at a major stability of an

explicit scheme would be to look at the coefficient of each term and require that each coefficient

must be positive. Now let us try and derive this stability condition using both the approaches. 
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First let us have a look at this Von Neumann approach. So Von Neumann stability analysis. Now

this Von Neumann stability analysis is basically related to the local solution that we are looking

at a solution in the vicinity of particular node and what we can do is this local solution can be

expressed in terms of complex eigenvectors. So that is the assumption which is made in this Von



Neumann stability analysis so local solution can be expressed as TJ at N sigma to the power N

where sigma is I scalar quantity.

E to the power the straight I alpha J. Now this straight I which we have put in italics I this I is

ever imaginary number–root 1, the square root of -1this what we call is our imaginary number.

Alpha is what is known as wave number. Okay so now in terms of this TJN the way we have

defined it let us write down our hat explicit schemes FTCS scheme which I have written earlier.

FTCS scheme for heat conduction. So this at TJ at N+1, this was given by 1-2D TJN+D times

TJ-1N+TJ+1N.

So let us have (()) (15:06) in the terms of the complex eigenvectors for all these variables (())

(15:11) now TJ N+1 would become on the left hand side we will have sigma N+1 E to the power

I alpha J where I is a complex number. On the right hand side, we will get 1-2D sigma to the

power N, E to the power I alpha J+D times sigma to the power N, E to the power I alpha J-

1+sigma to the power N, E to the power I alpha J+1.

Now let us divide this equation, both sides of this equation 3, divide 3/sigma to the power N, E to

the power I alpha J. So what we have on the left hand side is sigma, sigma=1-2D+D times E to

the power-I alpha+E to the power I alpha. E to the power-phi L find it the power I alpha they can

be expanded in terms of sign and cos. So this would become 1-2D+D times cos alpha-I, sign

alpha+cos alpha+I, sign alpha. So now let us correct the terms 1-2D+twice of D cos alpha, the

imaginary terms, they cancel out. 
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Now let us rearrange it as sigma=1-2D 1-cos alpha. Now if we want our solution to be stable we

would require that magnitude of sigma should be <1. So stability requires magnitude of sigma

should be <1. So we get two possibilities that is the -1 should be <1-2D*1-cos alpha and this

should be <1. So these two inequalities let us take one by one. Let us take first right inequality so

1-twiceof D 1- cos alpha is <1. 

If you subtract it subtract 1 from both the sides this will lead to -2D*1-cos alpha, this should be

<0/-2D so this inequality changes and we get 1- cos alpha should be>0. We have got this equal to

signs here. Now remember cos alpha is always <1 in magnitude so this holds this inequality

holds for any alpha. So this does not give us any requirement. Now let us have a look at the

second half of the inequality is -1<I=1-2D, 1-cos alpha. 

Let us add1 both the sides of the inequality so we get 0<or=2-2D1-cos alpha. Now this tells us 2

is >or =twice of D 1-cos alpha or we get D should be < or =1/1-cos alpha. Now what is the

maximum value of 1-cos alpha.   Minimum value of cos alpha is -1so this maximum value of 1-

cos alpha this would become 2. So therefore this inequality says that D should be <or =half. So

this  is  the stability  requirement  which  we get  from Von Noemann analysis.  That  is  say our

diffusion number should be < 1/2 which puts a restriction on the time step. 
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Okay now let us have a look at few more consequences of this requirement. Let us note down

that D was given in terms of delta t/delta x square/k. Now for stability we want d to be < or =

1/2. So we have chosen 1 delta t for time integration and suppose in some regions we want to

refine our spatial mess, so if a spatial mess is refined by a factor of 1/2, the definition of D and

this requirement size that the time step must be reduced by a factor of 4 that is new delta t prime

that should be delta t/4. 

So now that is a severe restriction and that is the reason why this explicit Euler method is not

suitable  for  the  problems  for  which  you  would  like  to  reach  the  steady-state  quickly.  This

particular method we are going to retain or use only for the cases where we require very accurate

value of temperature at each time step that you say if we want a very accurate time history. 

Now remember this particular condition which we derive from Von Neumann stability analysis,

we could have also derived it earlier while accessing the coefficients in this FTCS algorithm,

what were the coefficients let us have a relook at TI at N +1 was 1-2D TIN+D times TI-1N+T

times TI+1N. Now the last two they are anyway positive. 
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Stability requires that the first coefficient must be positive that is for 1-2D should be >0 and

which straightway leads to the same condition that d< or =1/2. So whether we perform the Von

Neumann stability analysis or we impose the restrictions of all coefficients for all time values of

the function, this should be positive, they lead us to the same stability condition.

(Refer Slide Time: 25:20)

We  can  say  this  FTCS  algorithm  applied  to  the  heat  conduction  problem,  the  stability

requirement of the diffusion number d should be <1/2. Now let us apply our explicit equation

Euler method to advection diffusion problem. 
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So 1-D advection diffusion problem we have only seen its generic transport equation and written

in terms or reform very similar to an initial value problem where we would assume the velocity

to be constant and fluid properties also to be constant and no source term, so we will write it as

del phi/del t=-u del phi/del x+gamma by rho del2 phi/del x square. So this is in a form very

similar toward our standard initial value problem so d5/dt and on the right hand side this is our

function f.

So let us apply explicit Euler methods, we get phi n+1=phi n, delta t times is function evaluated

at tn, that is -u del phi/dx+gamma/rho, del 2 phi/del x square at time instant n. Now you have got

two derivatives here, one with the conviction term, del phi/del x and one with the diffusion term

del  2  phi/del  x  square  and  at  each  grid  point  we  need  to  find  out  their  finite  difference

approximation.
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So  now  we  choose  a  uniform  grid  and  we  use  central  difference  scheme  for  all  special

derivatives that will again lead to what we call FTCS scheme so the discrete equation for the

value of phi at node I is phi I n+1=phi I n+delta t-u times phi I+1n-phi I-1n/2 delta x. This is a

central  difference approximation for about del phi/del  x2+gamma/rho.  Next we have got the

central difference approximation for del 2 phi/del x square term that is phi I+1n+phi I-1n-2 phi

In/delta x square. 
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To write  this  equation  more  compactly  let  us  introduce  few numbers  or  2  non-dimensional

parameters, so let u s define non-dimensional parameter c and d as c is defined as u delta T/delta

x. If we rearrange this definition, it is delta t/delta x/u and these defined as gamma delta t/rho



times delta x square which can also be written as delta t/rho delta x square/gamma, which is

equivalent to our diffusion number which have seen earlier in the context of conduction problem.

So this parameter d is nothing but diffusion number which you have seen earlier. Now let us have

a look at  this  parameter  c,  now the c is  called  Courant  number, which have been produced

Courant of course and it is ration of what, it is ratio of time step delta t, now what is delta x/u,

this delta x/u tells us the time which we take for a disturbance to traverse distance delta x, so this

is why we call it as conviction time. So Courant number becomes now the ratio of time step to

the conviction time. 
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Now in terms of these two parameters,  c and d, this is the shorthand form of explicit  FTCS

algorithm for advection diffusion problem. Phi I n+1=1-2d phi I n+d-c/2 phi I+1n+d-c/2 phi

I+1n+d+c/2 phi I-1n. Now we want to look at the stability of this method so this again can be

obtained by either using Von Neumann analysis which we have done earlier or by requiring the

coefficient  of  old  nodal  values  must  be  positive.  Now  let  us  try  this  approach  the  second

approach for deciding on the stability of this method.
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So an FTCS algorithm for advection diffusion problem. So what we had is phi I n+1 this was

given as 1-2d phi I n+d-c/2 phi I+1n+d+c/2 phi f I-1n. We want all coefficients on the right hand

side to be positive so for stability coefficients of phi I n, phi I+1n and phi I-1n must be positive

that is 1-2d should be >or =0, d-c/2 should be > or =0 and d+c/2>=0. The last one is obvious, d

and c were both positive numbers, so this holds good since d and c are positive.

So basically we have got these 2 conditions so this stability requires the first one says that 1-2d

should be >=0 that is d<=1/2. This was the same requirement which we had earlier derived for

the case of heat conduction equation and this is the one which is going to put a restriction on

time step.
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And the next one says d-c/2>=0 that translates to what we call a restriction on above. Velocity

field or it leads to the local (()) (32:58) number, this should be <=2. So the first condition or first

requiring  inputs  or  limitation  on  time  step,  the  second  one  puts  a  limitation  on  our  spatial

discretization. 
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Now let us have a look at 1 more case if d=0, then what will happen. If d=0 the first coefficient

1-2d that will be positive but what happens to the second one, the second coefficient will always

be negative so that means for no diffusion this FTCS algorithm for advection diffusion problem

is unconditionally unstable and with diffusion we have already derived the conditions that d<1/2

and d>c/2, which tells us that local Peclet number should be <2.
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Now can we improve upon these situations, specifically when diffusion is very small, there is

conviction dominated problem, you would like to have an explicit scheme which has got better

stability property, so improved stability can be obtained with what we call upwind difference

approximation  of  convective  term.  For  diffusion  we would  still  continue  to  use  our  central

difference  approximation  but  when  it  comes  to  the  convective  term  let  us  use  an  upwind

difference schemes.

If  you  assume  u>0  that  is  flow  is  from  left  to  right  in  x  direction,  so  often  difference

approximation for del phi/del x would be phi of I-phi of I-1/this 2 should not be there, this should

be phi I n-phi I-1n/delta x factor of 2 should be missing there +gamma/rho the second term of

central difference approximation for del 2 phi/del x square so phi I+1n+phi I-1n-2 phi of n/delta

x square. 

Now if you introduce to an earlier term, diffusion number and the Courant number, so in terms of

c and d parameters  this  particular  algorithm which we called  upwind FTUDCS scheme that

becomes phi I+1=1-2d-c phi I at n+d times phi fi+1n+d+c times phi fi-1n. Now what we can

easily say here, the coefficient of phi I+1 and phi I-1, they would always be positive. So there is

no restriction whatsoever in terms of local cell Peclet number and the first one, this is the one

which we should require to be greater than 0 for the sake of stability, this will put a restriction in



our time step. 
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And if you put that this is what we get, so stability requirement simply say that delta t should be

<1/[2 gamma/rho delta x square +u/delta x] and we can easily see that if there is no diffusion,

d=0 then this particular criteria would lead us to what we call the Courant number should be <1.

Okay, this  first  term becomes  0,  so  we straightway  get  this  particular  restriction.  Now this

condition is also referred to as Courant Friedrichs Lewy condition or the Courant condition and

this  is  an  important  requirement  for  the  use  of  explicit  time  stepping  schemes  in  CFT

applications that the Courant number should always be <unity. 

(Refer Slide Time: 37:07)



Now let us move onto some implicit methods and let us apply our backward Euler method to the

two problems which I have discussed so first application of implicit Euler limited with central

difference scheme for a spatial derivative for our heat conduction equation so we had Ti n+1=Ti

n+kappa times delta t, Ti+1, n+1+Ti-1n+1-2Ti n+1/delta x square. Introduce of diffusion number

in terms of diffusion this algorithm could be written in simpler form 1+2d Ti n+1-t Ti+1 n+1-T

times T of I-1 at n+1=Ti n.  

So now this is an equation which has to be solved, not just Ti at n+1 is unknown, Ti+1 at n+1 and

Ti-1 at n+1 also unknown. So we will collect such way all the nodes and we will get a system of

linear algebraic equations which must be solved at each time step to opt in our solution. In the

same way we could have also applied our Crank Nicolson Method and we would have obtained

an algorithm which looks fairly similar to this.

Next if you apply implicit method with CDS for advection diffusion problem where we have

used the CDS for this convicted term as well as diffusion term. So phi I n+1 becomes phi I

n+delta t-u times phi I+1 at n+1-phi I-1 at n+1/2 delta x+gamma/rho, phi I+1n+1+phi fi-1n+1-2

phi I n+1/delta x square or in terms of diffusion number and Courant number and rearranging

those terms we get 1+2d phi I n+1+-d+c/2 phi I+1 n+1-d-c/2, phi I-1 n+1=phi In. 

So this is again a couple system of equations, this is what we will get if you collect the equation

for all the nodes which would again be linear equation so we ought to solve a system of linear

equations to get our solution while using our implicit Euler method. 
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So now let us summarize the disadvantage which we will get that require solution of a set of

equations  at  each time  step and please  remember  our  implicit  Euler  method was first  order

accurate in time, so that is the disadvantage which we have got with this method. Of course if

you want higher order equation we can move onto the Crank Nicolson Method or higher-order

Addons Molten method in time. 

Now as far as implicit Euler method is concerned, it has also got a very big advantage, that this

method is unconditionally stable for any choice of delta t, so it allows use of use of a large time

step and thus it is very useful of solving steady flow problems whether you are dealing with a

steady our aim is to obtain a steady-state solution of a heat conduction equation or an advection

diffusion equation or a full Navier Stokes equation, we can use implicit Euler method to quickly

obtain using large time step barriers our steady-state solution.

So that is the big advantage which our implicit  Euler method provides. It stability properties

were so good that this is the preferred choice for solution of nonlinear time dependent equations.
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So that is where we would stop as for our applications are concerned. For more applications and

results please refer to the books which we have discussed earlier Chung’s book on computational

fluid dynamics, it contains many algorithm, their stability analysis and so on. Similarly, you can

also look at the book by Ferziger and Peric which gives further detailed applications of time

integration schemes to advection diffusion problem with some examples.

And  for  looking  at  various  time  integration  schemes  which  you  can  extend  to  our  heat

conduction or advection diffusion equation you can look at a book by Wood.


