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Lecture - 24
Accelerated iterative Methods for Linear Systems

Welcome to the third lecture in Module 4 on solution discreet algebraic systems. We had already

seen the features of discreet algebraic systems solution methods for non-linear systems and direct

and basic iterative methods for linear systems in previous lectures. Today, we shall  focus on

accelerated iterative methods for linear systems. So let us have recapitulation of what we did in

lecture 2 of this module. 
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We discussed direct solvers for discrete linear system specifically suited for CFT applications. In

fact, we had a detailed look at what we call Tri-Diagonal Matrix Algorithm or TDMA which can

be used for one dimensional problems and it can also work as a backbone of an iterative scheme,

based on alternative  direction  method.  Then we started off  with iterative  methods for  linear

systems which are most commonly used in CFDA programming. 

And we discussed some basic iterative methods which are generally very slow to converge but

nevertheless they very important for accelerated iterative methods, this is what we are going to

focus today at accelerated iterative methods for linear systems. 
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So outline, we will look at the category of methods what is known as Projection method and then

we will look up a specific type of projection method which we call Krylov subspace methods and

we  will  look  at  the  Pre-conditioners  which  are  required  in  these  methods,  the  basic

characteristics and then we will have a look at one method in detail for Symmetric systems, then

we will innumerate the methods for General Systems which are not symmetric. 

And in the end we will have a look at a very popular and very powerful class of methods which

is  called  Multi-grid  methods.  Now what  is  a  projection  method?  This  is  again  an  iterative

scheme. 
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And here we will introduce some terms from the vector algebra that given an available iterate X,

let us say X naught, we have to find a new approximate x which will basically be from a set of

vectors x0+K such that this residual b-Ax, is orthogonal to attain the subspace which is shown as

lambda here. Again K is called the search space or search subspace that is to say we are going to

take out some vectors from this subspace to get our new iterate and your  lambda denotes the

subspace of constraints. 

For a detailed and more definitive definition of projection methods, please have a look at the

book by Saad published in 2003, we will give the complete bibliographic detail of this book

towards the end of the lecture. 
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Now this  Krylov subspace methods, they are a specific type of projection method wherein the

subspace K that is your search subspace is Krylov subspace K  subscript m defined by Km A, r

naught, r naught is your residual vector, so span of these vectors r0, Ar0, A square r0 and so on

up to A to the power m-1r0 where A is our system matrix. And in approximate solution Xm is of

the form Xm is one new iterate so X and X0+qM-1A r0 where qm-1 is a polynomial of degree m-

1. 

So this is the formal representation of the new iterate, of course we will not actually compute any

of these polynomials  in real  practice in real algorithms,  this  is just  a starting point.  Now in

Krylov subspace methods we can have different type depending on the subspace of constraints

chosen, so different parts of subspace of constraint leads to different Krylov subspace methods. 
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For instance, if lambda m is same as Km that is our constrained space, subspace is same as the

search  subspace  then  we get  what  we call  Conjugate  gradient  method for  symmetric  linear

systems and in case if you have lambda m=AKm we get a powerful method called GMRES for

general linear systems. So there would be different possibilities for different types of  Krylov

subspace methods, for details please refer the book of Saad indicated earlier. 

(Refer Slide Time: 05:35)

Now performance  of  a  Krylov  subspace  solver  such  as  our  Conjugate  gradient  or  GMRES

depends on two factors. The first factor is the choice of pre-conditioner which we use in these

methods and the pre-conditioner primarily affects convergence of iteration and it also affects the



overall computing time because if each call to pre-conditioner is very time consuming that is

going to affect our overall computing time as well. 

Similarly, if the number of iterations are large then again our computing time would be affected.

So ideally we would like to have a pre-conditioner which takes less time per iteration step and it

converges very fast.  So another factor which will  affect  the performances is  the time or the

number of operations which are required to compute matrix vector products. 

So in fact this is the most time consuming sequence of operations involved in Krylov subspace

methods whether be it our PCG or GMRES, so the time taken by these matrix vector products it

affects the overall computational efficiency of a Krylov subspace algorithm and we can easily

see  that  our  matrix  sparsity  pattern  would  affect  the  computational  operations  required  in

obtaining our matrix vector products. 

So  this  particular  thing  is  dependent  on  sparsity  pattern  of  the  matrix.  Fortunately,  in  CFT

applications we will have very sparse matrices, so matrix vector products can be obtained very

efficiently and this is one of the reasons why this Krylov subspace solvers are very popular in

CFT for large scale problems. 
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Now let us have a look at some properties of pre-conditioners. So pre-conditioners are required

to ensure that our method is a robust and efficient  solution algorithm. So what are essential

properties of a pre-conditioner? If you look a bit in more detail, which we did not have time

today, the iterative solution process, the convergence is linked to the eigenvalues of our matrix.

So a  pre-conditioner  should  help  cluster  the  eigenvalues  of  preconditioned  system which  is

obtain after p multiplying pre-conditioner to a system matrix. 

So, if there cluster together that ensures faster convergences.  The next one is very important

restriction  which  we have  got.  The majority  of  Krylov  subspace  solver,  they  require  that  a

preconditioned must be a constant linear operator in all the iterations. We cannot have a variable

operator or a non-linear operator as our pre-conditioner for Krylov subspace methods.
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Now, there is  some Desirable  properties,  desirable  in the sense they may not  hold it  for all

choices. So a pre-conditioner should take as little time as possible, that is what we would desire

and the second is it should result in small number of iterations and the number of iterations will

independent of the problem size. Now both of these are conflict in requirements if we have pre-

conditioner which takes a very little time for instance if we use Jacobi methods or Gauss-Seidel

methods as a pre-conditioner; those methods are very fast. 



But the number of iterations required would be must larger with Jacobi as a pre-conditioner. And

if we use a better pre-conditioner like multi-grid as a pre-conditioner, the computation time taken

by the pre-conditioner would be fairly large but we would get very small number of iterations for

convergences and further we would see in one or two numerical examples today that multi-grid

used as a pre-conditioner results in the required number iterations which are independent of the

system size, whether system size in thousands or millions or billions. 

So that is why we say there is a trade-off between the preceding to desirable properties,  we

choose a pre-conditioner which requires less time, number of iterations would be increase and so

on.  So  we  will  ultimately  the  overall  computing  time  might  suffer  with  such  schemes.

Theoretically, for first convergences the pre-conditioning matrix or operator as the case maybe

must be a close approximation to matrix A, the A is our system matrix.

Why I have mentioned the word operator here is that we might also use certain sequence of

operation and there affect would be what we call the affect of pre-conditioner for instance multi-

grid process itself cannot be represented as a matrix, but it is nevertheless form a linear operator

and hence can be used as a pre-conditioner with a Krylov subspace solver. 

So in all our discussions on Krylov subspace methods wherever we see the algorithms we would

put a symbolic form symbolic term M inverse which would M inverse multiplied by residual

vector that would give us the affect of pre-conditioner, but M inverse is not-- M is not a matrix

per say, it is just M inverse multiplied by the residual that is the affect which we are looking for

with our pre-conditioning operator. So what is the most commonly use pre-conditioners? 
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The simplest one use is Jacobi or Diagonal pre-conditioner. But please remember this is a very

fast pre-conditioner, but the number of iterations required are pretty large, in fact theoretically,

the  convergence  of  a  Krylov  subspace  method  would  be  ensured  in  number  of  iterations

proportional to the system size, this is not an ideal situation. So Jacobi Pre-conditioner results in

very fast, it is very fast per iteration step but results in poor rate of convergences, so our overall

computing might have pretty large with Jacobi pre-conditioner. 

Then recently, incomplete LU factorization have been developed, LU factorization results in a

larger number of fill-ins, so where do we cut-off those fill-ins that would decide the effectiveness

of these pre-conditioners. So the word incomplete we use because we will not carry out daily

decomposition process in full,  it will be stopped when certain allowed number of fill-ins are

reached. This regions called LU or incomplete LU factorization pre-conditioner.

There are variety of them available in literature which you can look into (()) (12:51), these are

very affective but there is a problem with fill-ins, what do you mean by fill-ins? Our system

matrix is very fast but the operator matrix which we get pre-conditioning matrix which we get

from incomplete LU factorization might not be as sparse as our original system matrix. So there

might be memory trade-offs require with incomplete LU factorizations. 



And the  matrix  products  matrix  vector  products  which  we require  with  pre-conditioner  that

would  also  be  pretty  expensive.  The  next  sub  category  of  pre-conditioner  of  what  we  call

Approximate inverse pre-conditioners, what (()) (13:34) look for pre-conditioning matrix A is

close to our matrix system matrix A then that would result in a very fast convergences size, so

this what approximate inverse pre-conditioners aim at.

And there are few categories like Block diagonal pre-conditioner is one of them. And we also

obtain approximate inverse pre-conditioner based on what we call Frobenius norm minimization.

For details of this ILU or Block diagonal or Frobenius norm is what we call is fast approximate

inverse pre-conditioners, please have a look at the book by Saad. 

And then in then I would like to just mention this very powerful pre-conditioner multi-grid pre-

conditioners,  later  on  we  would  see  that  multi-grid  algorithm  can  be  used  a  very  efficient

standalone solver. But there are certain situations wherein instead of a solver we can use multi-

grid as  a pre-conditioner  to a  Krylov subspace algorithm.  And the use of  Multi-grid with a

Krylov subspace algorithm results in what we call an optimal method for which the number of

iterations required is independent the size-- system size.

Now next, we will have a look at a Krylov subspace solver symmetric systems, in fact we would

put some more requirements here. 
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We are looking for symmetric as well as positive definite linear systems. So there are quite a few

Krylov subspace methods available for this  family but the simplest  and most commonly use

Krylov subspace method is pre-conditioned conjugate gradient method, or in short we use this

term our acronym PCG. We will have a look at the detail of this algorithm, this is very elegant

and  very  simple  to  program be  it  on  for  a  serial  machine  or  massively  parallel  distributed

memory machine. 

That is the reason if we assured that our system matrix is symmetric and positive definite which

is very often the case, the suggestion of Poisson problem on central different grids and a finite

element grids. Since such situations PCG can be useful solution of a Poisson problem. Now in

the  algorithm  which  we  are  going  to  have  look  in  detail  is  the  pre-conditioning  would  be

represented by z=M inverse r, okay.

But we will not attempt to even just form M or forget about taking inverse of M, all that we mean

by this particular step is solve a system of this type Mz=r this particular linear system, solve it M

get a vector Z which is used in this algorithm. And M may not even be explicitly defined, we

only need an operator which is constant in each iteration, and that operator is represented by the

symbol M. So now just have a look detailed look at our PCG algorithm.
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So Pre-conditioned conjugate gradient method. Since it is an iterative procedure so we would

require  that  we  start  off  with  an  initial  guess  and  we  would  to  our  iteration  to  terminate

somewhere so when we should terminate  the iteration we should also have to  specify some

tolerance for the convergences of our iterations. So that is the first step which we need to fix in

that  we have to set  a tolerance for convergences,  set  a tolerance for convergence check and

choose an initial guess.

Let us represent our initial guess by vector x naught for solution of system equations which we

are going to represent as A x=b. So now let us write it in a pseudo code form or algorithmic form.

So suppose we begin our subroutine being PCG, what we need to first do is, given our initial

guess x0 let us compute what would be the initial residual. So compute residual, what we mean a

residual here? Substitute this initial guess x0 in our system, okay that will not satisfying.

So let us find it for differences residual r0 would be defined as a vector b-matrix A times our

initial guess x0. We will also do some more computations. So this is one computation compute

residual r0 then, next computation which we would require is to invoke our pre-conditioner, so

find out or solve the system to get our initial guess for the vector z, which we call it Z0, so M

inverse r0. And we would introduce few vectors here. So we will introduce a vector P0=Z0. 



So these are the few things which we do before our iterations start, that is compute the residual

vector, solve system equations with our pre-conditioner, so M inverse r0 basically this represents

our affect of pre-conditioner. And then we will introduce a vector which is called P0 which are

related search direction P0=Z0 that is what we are going to initialize. Now next we will now start

our iteration process.

So let us say for j=1, 2 and so on until convergences. We have to repeat certain set of statements.

Okay, so now let us write down those set of statement which are to be done at each iteration. We

will  computer  scalar  quantities  which are required in  our  algorithm.  the first  scalar  quantity

which we will compute is alpha J which is given by rj, jz/Apj, pj. Now bracket term has got a

very specific meaning. 
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Let us write down some corner, so what we denote this is what we call Inner product, or dot

product of two vectors. So this is terminology or all the symbols which we have shorten and have

used to represent the dot product. So we have computed our one is scalar quantity alpha J. And

once we know alpha J we have already got a computed value of Pz; we can get the new iterate in

terms of alpha J,  so new iterate  xj that would be given as or rather call  xj+1. So it  will  be

xj+alpha J times, the vector pj which we have calculated earlier.



So alpha J  essentially  represent  a  sort  of  weight  factor  and pjr  what  we call  the correction

vectors, so correction vectors multiplied by this scalar weight alpha J or to be added together we

get an improved guess xj+1. Next, we will computer our residual or rather, for computing the

residual we have do not have to substitute in the system of equation that we do not have to

compute r-A times something. We get fairly some simple formula here. 

So rj+1, so this would be the residual next step. This can be obtained by what the current residual

and from this subtract the vector at Apj this vector we have obtained earlier multiplied by alpha J

subtract it from rj and we get an estimate for the residual vector. Now the norm of this residual

vector can help us at certain the convergence process. So there are various ways in which we can

implement in our convergences check. 

We can look at the norm of rj or of the relative norm of rj that you take the magnitude of rj+1/

magnitude of r0 which we started off with so that will give us a relative convergence things with

our tolerance, if satisfied we can say now our solution is converged. The next thing what we will

do is we are now going to compute a new set of vectors Zj. So z of Zj+1 of the Zj+1 would be

used in our next iteration to compute this alpha J and so on. So Zj+1 has to be obtained by

solving pre-conditioner system. 

So we would represent it symbolic as M inverse rj+1, okay. So this is our affect of the pre-

conditioner. Okay. Now, we would compute it under scalar quantity beta J, beta J is given by the

Inner  product  of  rj+1;  Zj+1;  so  dot  products  of  this  vector  divided  by  rj,  zj.  Now  in  this

evaluation we would compute only one of the inner products and we will, we do not have to

repeatedly compute in same iteration.

We do not have to compute rj+1, Zj+1 and rj, zj; rj zj would be available from the previous

iteration it is already been computed earlier, so we can save it and use it here. And we can now

get an estimate of the correction vector Pj+1 this would be given as Z of j+1 times beta j Pj. So

the correction vector which we need to use for the next iteration this Pj+1 that is obtained in

terms of the correction vector which we get from in the pre-conditioning step plus scalar factor

beta j into the correction vector from the previous iteration. 



So now this completes our one iteration. And in fact here before we go and compute this Zj+1,

we would also perform our convergence check. So if you want you can do convergence here or

you can  do convergences  check after  comparing  Pj+1 to  decide  when we need  to  exit  this

iteration loop. So you can see some few nice things here that at each step of iteration in that is

say in each iterations we require only one call to the pre-conditioner and we also require only

two new sets of inner products. 

So programming this PCG is very easy you can right, it is almost trivial if you have got, all that

we need is we need a routine for computing this matrix vector product. We need one routine to

form this scalar or inner product, okay. So this whole algorithm can be coded into few lines of

code, in any language in C or FORTRAN whichever is the language of your choice. 

So this PCG works very well as we have seen earlier this is useful or in fact it is applicable for

symmetric and positive definite systems. But in practice it also works for the systems for which

we are not sure, the system is matrix, symmetric but we are not very sure about the positive

definiteness, many times this algorithms works pretty effectively. So whenever a system matrix

is symmetric among Krylov subspace method our choice is very clear this is-- no algorithm can

bit PCG in terms of its efficiency. 

The overall computational efficiency of PCG but of course depends on our pre-conditioning step.

So if you want to have robust and efficient PCG algorithm to solve a system of equations, we

have to choose a suitable pre-conditioner. And you surprise now that this is-- there are lots and

lots of pre-conditioner is available in literature and a still considerable amount for research work

is going on in developing newer set  of pre-conditioners which will  give us more robust and

efficient version of PCG. 

Now let  us have a look at  list  of Krylov subspace solvers for general systems. So the most

popular Krylov subspace methods. At a top of the list the priority is what we call Generalized

Minimum Residual called GMRES method developed by Saad. So this method is bit more bit

difficult to program but it is very efficient method for general linear systems.
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Then similar to conjugate gradient we can have what we call a biconjugate Gradient method for

our asymmetric or general linear systems, so in this case we require two set of directions that is

the reason why we have got biconjugate gradient method. And it would require at each iteration

step two calls to pre-conditioner one for our normal system and one for transpose system. So

there are few methods available in the literature, which do not require the use of the transpose

matrix so conjugate gradient square method is one of them. 

And then we have got 8 version of—and the version of biconjugate method which is called

biconjugate Gradient Stabilized or BICGSTAB method. This again a very robust method and this

method does not require forming the transpose of a matrix. Since it can also be used for non-

linear problems wherein (()) (33:46) matrix by taking finite differences and finding the transpose

is very a difficult task. 

So  for  this  general  systems,  most  effective  choices  which  we  call  GMRES,  GMRES  only

drawback, that is writing the code is bit involved. BICGSTAB is relatively simple, it is slightly

more complicated or PCG algorithm which you have seen. Now please remember the PCG and

GMRES,  Biconjugate  gradient,  CGS or  this  BICGSTAB all  these  algorithms  require  a  pre-

conditioner which must be the same at each iteration. 



So take care of this problem, Saad develop one method is called Flexible GMRES method. Now

this Flexible GMRES is a variant of GMRES which does not put dis-restriction of consensus of a

pre-conditioner at  each step.  So a pre-conditioner can vary from one iteration to another. So

much so that we can have Flexible GMRES method in which GMRES itself can be used as a pre-

conditioner. And thereby we get a flexible method which is fair pretty efficient. 

Now I would not go into detail of any of these algorithms. I would refer you to the book of Saad

which gives you detailed descriptions of the methods along with the algorithm and pseudo code

which can be easily  programmed.  And now we move onto the next  category  of accelerated

methods which we call  Multi-grid methods. These methods are also referred to as multilevel

methods, why they called multilevel, that would become pretty clear very soon.
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So this Multi-grid techniques exploit discretizations with different mesh sizes. In normal finite

differential finite volume or for (()) (36:03) formulation we will, initially have one grid using

which we obtain a discrete system equations. But solving there was system just on one Fine grid,

we can frequent construct a sequence of coarser grids and use these solutions on those grids to

obtain better rate of convergence. 

In some cases, it may not be possible for us to form or to come up with a sequence of nested

coarse grid, so in that case, we can instead form what we call coarse grid operators algebraically



so that is the reason why I have put here the different mesh sizes or operators. Here by operators

I mean is coarse grid operators. And these-- when applied to a given problem obtained optimal

convergences based on relaxation techniques. 

A relaxation  techniques  basically  a  simple  iterative  schemes or  basic  iterative  schemes seen

earlier over Jacobi or Gauss-Seidel methods, those are refer to as relaxation techniques in the

context of multi-grid method. And how does this method work? What is the basis of the Multi-

grid? If we analyze the errors in our convergences process we can breakdown the errors in two

ways. On a given grid, the errors can be classified as high frequency errors which are linked to

the fine grid signs and the low frequency errors. 

Now if you use a relaxation techniques like Jacobi iteration or Gauss-Seidel iteration, in very few

iterations  of  Jacobi  or  Gauss-Seidel  we  can  reduce  or  eliminate  high  frequency  errors.  But

removing low frequency errors is very difficult.  But those low-- this frequency of the errors

linked to a grid size, move on to a coarser grid the low frequency error become high frequency

errors on a coarser grid. 

These grids which can be easily removed using a relaxation or smoothing scheme. We would use

this term relaxation or smoothing interchangeably, okay. And the typical methods which we are

going to use for relaxation smoothing or Jacobi or Gauss-Seidel iterations. So that is the reason

why, if we can combined a sequence of grid, we have got a finest grid on which we would

ultimately like to obtain our solution, choose a coarser grid on that coarser grid.

We can eliminate the low frequency errors, obtain a correction at to listed on our finer grid and

thereby we would have an iterative  technique  which  converges very fast.  So this  multi-grid

methods they exhibit a convergences rate that is independent of the number of unknowns in the

discretized system. We will see it numerically, we will have a look at one or two examples where

we have used multi-gird as a pre-conditioner, okay. 
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So in this  particular  sense this  multi-grid methods  are  refer  to  as  an optimal  method and a

complexity on all such size that there are almost of order N that is computational complexity of

the  method multi-grid  methods,  is  scales  linearly  with  a  system size.  So  that  is  written  the

beautiful  characteristic  of multi-grid methods.  Now what are main components of multi-grid

algorithm?
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We are dealing with different set of grids with actual physical grids or set of algebraic operator.

So we need an operator R which we call restriction operator which maps or restricts residuals on

a finer grid to the coarser grid. So we redistrict them from a large number of grid points to a



smaller number of grid that is why the word used here is restrict and the name of this operator as

restriction operator, we normally use symbol capital R for the restriction operators. 

So what we will do? We will use this operator to restrict our residual on a finer grid or a coarser

grid and we will solve for a correction term on a coarser grid. Once that has been solved we now

need to extend or interpolates that suggestion to a finer grid to obtain the solution, or improved

iterate. So we need what we call prolongation operator which we will denote by symbol capital P

which extends or interpolates solutions on a coarser grid to a finer grid. 

And then we talked about  relaxation  scheme or  smoothing procedure  so let  us  say we will

symbolically denoted by the term SMOOTH within parentheses where we will provide a certain

set of arguments. Now this prolongation and the restriction operators P naught they will depend

on the underlying different equation that we will have a differential equation that we will have a

differential  prolongation  operators  for  let  us  say  Poisson  equation  and  a  different  one  for

advection diffusion equation. 

So  this  prolongation  and  restriction  operators  they  will  depend  on  our  partial  differential

equations. And they will also dependent on the Multi-grid strategy which we have chosen, by

Multi-grid strategy we will discuss next what we, we can classify our strategy as two times.
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So first one is what we call the Geometric multi-grid and very often in literature we will come

across the acronyms GMG all capital letters. So, Geometric multi-grid is based on a sequence of

nested grids. The reason we have used geometric is that geometrically we will actually obtain a

sequence of (()) (42:20) grids using a grid generator. And those set of nested grid would be used

in our solution process. 

Many a times specifically on unstructured girds it may be very difficult to generate a sequence of

nested grid, even if you can generate of sequence of fine coarse and coarser grids calculation of

our restriction and prolongation operators could be very complicated. So alternative which has

been developed recently in past two decades is what is referred to as Algebraic multi-grid. 

Now in algebraic multi-grid we actually do not form a sequence of nested grids only one grid is

good  enough  that  is  a  finest  grid.  And  multi-grid  component  that  is  your  prolongation  and

restriction operators they are generated based on a purely algebraic  procedure.  Since we are

using  a  purely  algebraic  procedure  there  are  many  types  of  procedures  which  have  been

suggested in literature agglomeration based or a (()) (43:25). 

So since everything is being done, by looking at the coefficients of the matrix which has been

generated on the fine grid this set of multi-grids methods are called algebraic multi-grid methods.
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Now as for the algorithm is concerned the basic algorithm or the format of the algorithm is

saying both GMG that is your geometric multi-grid and algebraic multi-grid. In addition, we

have got considerable flexibility in terms of the taking of the—taking of its prolongation and

restriction operators and the cycle of integrate transverse process. 

That is how do we, use our restriction in what sequence we use our restriction operators, in what

sequence we prolong or interpolate our correction from a coarser grid to finer grid they are very

assisted and it is available. Few typical examples V or W cycle, the symbol V or W that distance

for the way the restriction and prolongations or employed. Let just have a geometric look at V

cycle. And why we use the symbol V.
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So suppose a top level, this is our, what we call finest grid. We will assume an initial guess,

complete our residual, next restrict that residual, go to the next grid level, this is a coarser or

coarse grid let us call it as 1, we want to stop here, further use restriction operator, second use

and then obtain the residual on 8 grid which is even coarser than the coarser than coarse grid 1,

let us call it coarse grid 2 and so on. We can have many sequences of such levels. 

So this is coarse grid 3, so suppose we have selected that okay we are going to go for only 3 set

of grids,  so use restriction operator  once,  twice and thrice,  so that  each level  we have used

restriction operator, at the coarsest grid level then solve for the correction vector or correction



term and then once we have solved, we have basically solved a linear system which would be

much smaller in size compared to our finest grid. 

So we can use maybe a direct linear solver or a very accurate or converge Krylov subspace

solution  or  a  solution  obtained  using  any  Krylov  subspace  solver  which  has  converged

sufficiently and then this correction term would now be prolonged or what we call interpolated.

It is prolonged our solution to next grid, to next finer grid to next finer grid, ultimately we would

reach the finest grid level whenever our solution is sought. 

So we proceed in this way that is what is referred to as V cycle. 
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Okay, we can also have W cycle, can bend the student same way, we have got a sequence of

grids, you go once or apply this restrictions, restrictions, restrictions, restrictions, and obtain a

solution here, then prolong it, use the prolongation operators to get a correction term here but

instead of proceeding all  the way to the top of the hierarchy. We might proceed only to the

intermediate level and further we would obtain certain residual here. 

We would repeat the process; we will go back to the coarser and coarser grid levels, solve for the

correction vector once again and then do the final sort of prolongations to reach to our finest grid

levels. So this is the finest grid level. So the way this process has been done, this resembles our



W symbol, that is the reason why it is called as W cycle. So either of these cycles can be used, in

fact V cycle looks a bit simpler and is the one which is used most widely. 

Now as I mentioned earlier, multi-grid method can be used as standalone solver. That is to say it

can  be  used to  solve  a  problem by itself  or  it  can be used as  a  pre-conditioner  for  Krylov

subspace method for instance our conjugal  gradient or GMRES, so it  can be used as a pre-

conditioner for PCG or GMRES. There are certain advantages of using it as a pre-conditioner

and for details of these different algebraic multi-grid and geometric multi-grid methods please

see the books by Saad and Trottenberg et al. 

There are a few other multi-grid books but these two are very good, specifically the book by

Saad that  will  give  us  a  compendium of  all  types  of  iterative  schemes  including  multi-grid

method and their parallel extensions. Before we proceed further let us have a look at a sample

multi-grid algorithm.
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Okay, so now let us have a look at a typical V cycle multi-grid. Okay, we would use our symbols

for instance your system matrix is A, to denote a certain grid level we are going to use the

subscripts,  so  AJ,  this  would  represent  the  matrix  obtained  at  Jth  grid  level.  Similarly,  P

superscript  J,  this  is  restriction  operation,  operator  from  Jth  grid  to  J-1th  grid  and  this  P

superscript j this would represent our prolongation operator.



Operator from Jth grid to J+Y and we would represent our smoothing process as let us say we

have got vector W, so W over bar, that over bar would represent the affect of this smoothing

process at grid level J, so this WJ bar or say W bar J this is the effect of the smoothing procedure

which could be our Jacobi iteration or Gauss-Seidel iteration used starting with the initial guess

WJ for a system AJ and right hand side given by this. So this is our smoothing procedure. 

Now with this notation, we will say that how do we obtain our multi-grid solution. So multi-grid

algorithm is a recursive algorithm, so the solution which we would obtain, that is X m+1 J,

supposing  we  use  V cycle,  so  let  us  call  it  VCYC in  short  form for  our  algorithm  or  M

superscript j Xm subscript j, so this is our V cycle algorithm.

Now what is the expanded form of V cycle algorithm, so VCYC, it is a recursive process which

will depend on our grid level J, so recursively do the following steps. First let us check the grid

level, if we have breached the coarsest grid level, so if J=0 which represents the coarsest grid, so

in this case what we will do we will use a direct solver to solve the system A0, X0=R0. So this is

what we do at the bottom of the grid level.
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Else we have to do a set of operations and these operations are called, first one we will have to

do what we call pre-smoothing. Now pre-smoothing simply means that we have got our solution



vector Xm at grid level J obtained, it is a smoothed version by applying a set of or say, a few

iterations of our smoothing procedure. 

So It is smooth, let us use a superscript new one to denote that number of iterations of our Jacobi

or Gauss-Seidel iterations we want to use on starting with the initial guess Xm subscript J or

system matrix AJ and this residual vector Rm of J. Okay this new one could be as small as 2 or 3,

that we might just use 2 or 3 iterations of the Gauss-Seidel or Jacobi iteration for pre-smoothing.

Then the next step is what we call defect computation. 

As you compute the residual with the smoothed value of Xm J which we have computed earlier,

so lets us call it Rm J=Rm J-A of J Xm bar J. And then it has to be restricted to the coarser grid,

so restriction process, sorry we will go to coarser grid level Rm J-1, apply the restriction operator

RJ-1 to our vector RM/J and then once we have got the residual vector on coarse grid. 

Then find out coarse grid correction, this is Xm J as the previous value of Xm J+our projection

operator at grid level J multiplied by the result of V cycle operated on our RM/J-1 at grid level J-

1 with the residual of 0. And next is what we call, once we have got this coarse grid correction

we have to apply what we call post smoothing, post smoothing simply represents that after post

smoothing we will  get  our  new iterate  for  the  next  multi-grid  iterations  Xm  at  grid  level  J

smooth. 

This is of course we use new to iterations of Jacobi process Xm J, A J, rm J, so that is it and so if

you look carefully here we have got the procedure which calls itself the V cycle algorithm itself

calls it in the middle V cycle-- so that is why it is a recursive process. So for actual details of

algorithm and its implementation please have a look at the two books which I have referred

earlier Saad and Trottenberg. Now let us have a quick look at its application as a pre-conditioner. 
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Let us say we want to apply or we want to solve our problem on a very complicated grid so on

which generating a sequence of natural grid would be very difficult, so what we can do is we can

use a Cartesian grid but use the geometric multi-grid or generate the set of nested grids only for

the rectangular sub blocks. So on each rectangular sub block we can easily generate the sequence

of nester grids, obtain the multi-grid correction on that as if pre-conditioner and use that in our

Krylov subspace solver. 
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So what we basically do is we have got a residual, now to get the residual at each node which

may not be the part of our actual domain like these outer nodes, there we will simply set residual



value to be 0. So 0 extension of our residual vector rK and let us say in our PCG, so extended by

adding 0s to get this residual term for multi-grid. 

Similarly, we will set the initial guess z0 at z0k0 and then we can use N number of multi-grid

cycles, that n could be 1, 2 or 3 at the most 3 that is what we will need to generate a solution

ZML by using V cycle multi-grid. So V cycle multi-grid will give us a solution of the problem

starting off with this our right hand side vector and ZNL that will give us the correction term.

And next all that we need to do is just choose those components of ZNL which fall into our

complicated domain. 
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And this is what we applied using a Cartesian grid for heat conduction problem and 64 cube grid

which translates to a few 100,000 grid points and this is a comparison of 2 that is our Jacobi pre-

conditioner  which  takes  around 120 iterations  and this  is  our  multi-grid  pre-conditioner, the

solution converges to the tolerance of 10 to the power -8 in 30 to 40 iterations. So this was a grid

size of few 100,000s. 
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Now let us take a very complicated problem and the system size is very large, it is 7 millions. It

is  a  similar  problem,  Poisson equation  for  pressure  which  is  similar  to  a  heat  conduction

equation. So for this problem involving few million, now here I have used algorithmic matrix to

indicate number of iterations. This Jacobi we need many thousands of iterations with our Jacobi

pre-conditioner, with multi-grid pre-conditioner, the number of iterations is restricted to 30. 

Similarly, I have also tried it for a few billions, the number of grid points on few billions and

again what we have seen is with multi-grid pre-conditioner, the number of iterations required are

of the order of 30 to 40. So that proves our multi-grid method or along with multi-grid pre-

conditioner we have obtained what we can call an optimal method which does not depend on the

size of the system.
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Now references,  the book by Press gives us Numerical  Recipes book gives some algorithms

related to the Krylov subspace solvers and their corresponding course in C, C++ FORTRAN, 77

of FORTRAN 90 language.  Saad’s book is a very comprehensive book on iterative methods

including  multi-grid  systems  and  this  Trottenberg’s  book  which  is  exclusive  to  multi-grid

method.  It  discusses  both  geometric  and algebraic  multi-grid  algorithms for  different  partial

differential equations.

 

There is some web resources which you can consult, you can get free programs on them and

reading materials, netlib.org it contains the collection of different routines or algorithms based on

the  Krylov subspace  methods  and this  mgnet.org,  this  particular  website  is  dedicated  to  the

material  related  to  multi-grid  methods  both  geometric  and  algebraic  multi-grid.  So  I  would

strongly advise you to have a look at this mgnet.org website to have a look at the further details

about the algorithms and programs are related to multi-grid methods.


