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Lecture - 23
Direct and Basic Iterative Methods for Linear Systems

Welcome back to the next lecture in module 4 on solution of Discrete Algebraic Systems. We

had had a look at these features of discrete algebraic systems which are encountered in CFD

in the last lecture and we also had a look at methods for non-linear systems. In this lecture we

are going to focus on direct and basic iterative methods for linear systems and accelerate

iterative methods for linear systems if time permits today.

(Refer Slide Time: 00:55)

So, let us have recap for we did in the previous lecture. We discuss what are the basic features

of the discrete algebraic systems encountered in CFD applications are and then we discussed

the  2 basic  methods  for  non-linear  systems.  That  is  a  sequential  iteration  procedure  and

Newton-Raphson method.
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In this lecture we will focus on linear systems. We will first have a brief look at few direct

methods and then few basic iterative methods for linear systems. So, we will start off with the

Direct Solvers for Discrete Linear Algebraic Systems. In particular, we will derive this tri-

diagonal matrix algorithm. So, this is one of a very few Direct Solvers which are extensively

used in CFD.

And then we will start off with iterative methods for linear systems, will have a look at few

basic iterative methods.

(Refer Slide Time: 01:49)

Now let us have a look at basic features of this numerical method for linear systems. We have

direct solvers. What do you mean by direct solvers? The once which work directly on a given

system of equations and if we had infinite precision in calculations they would lead us to an



adjunct solution of the problem without any approximation or any numerical errors. Typical

examples  or  Gauss  elimination  procedure  and  factorization  base  procedures  like  LU

decomposition.

They are many more and we have got literature full of different decomposition procedures for

solution of different types linear systems. Then we have also got iterative solvers, typical

examples for our Gauss –Seidel process, SOR, which is successive over-relaxation scheme,

pre-congregate method, multi-grid method and host of many iterative schemes.

We have got books full of these iterative methods as well as direct solvers available. So, in

this lecture we are going to have a look at few simple represent that is which are extensively

used in CFD.

(Refer Slide Time: 03:02)

Now, which particular solver we would use in our numerical code that will depend on the

nature of the system matrix. For example, if our system is symmetric and positive definite

this would be the case if we had used center difference approximation for a Poisson  problem.

And similarly if you use (()) (03:24) finite element process for any Poisson equation, both of

these describes and processes will lead us to a symmetric and positive definite system.

And in this case we have got simplified versions of decomposition process for instance this

Cholesky decomposition which works more efficiently compared to LU decomposition. And

similarly we have got specialized versions of iterative solvers such as symmetric SSOR and

preconditioned conjugate gradient method.



(Refer Slide Time: 04:04)

But if you are not sure if your system is symmetric and positive definite that is to say your

system is what we would say a general system and we know for sure that is going to be

invertible a solution exists. Then we can use direct solvers such as LU decomposition, Gauss

elimination and so on. And iterative solvers some of them are Gauss- Seidel, successive over-

relaxation scheme, GMRES and bi-conjugate gradient method.

Now these methods for general system they take definitely more computation time compared

to the methods which for symmetric systems will take. Let us introduce a term which we

would use very often in presentation of algorithms is called computational complexity.

(Refer Slide Time: 04:56)



So,  something  linked  to  the  number  of  arithmetic  operations.  So,  number  of  arithmetic

operations  involved  in  numerical  solution  of  an  algebraic  system  is  referred  to  as  the

computational complexity. So, this term is also extended for any algorithm whether it is being

used for algebraic system otherwise. And it depends on in our context the order of system that

is the number of unknown’s capital N.

It also depends on the nature and its structure of the system matrix. By nature, we mean

whether it is symmetric positive definite or it is un-symmetric system. By structure we mean

whether it is parts system but multi diagonal structure, a banded matrix or it is a full matrix.

So, the computation of complexity will depend on all these features. It also depends on the

choice of the solution algorithm.

So,  different  algorithm  they  have  got  different  computation  complexities.  In  general,

computational complexity of direct solvers,

(Refer Slide Time: 06:00)

For example, Gauss elimination or LU decomposition it grows as Order N cube and there is

one  exception  to  it.  The  specialized  solvers  such  as  TDMA  and  similarly  cyclical

decomposition which are applicable to very special matrixes they are exceptions to this rule.

So, we talk about the computational complexity of direct solvers of (()) (06:30) of the order O

N cube.

We are talking about our general system not specialized solvers such as TDMA. And we have

got another category of algorithm which we called fast methods most, more precisely as fast



iterative methods. Thus their aim is to obtain a computational complexity if it grows with this

as system size that is computational complexity of the order O N are order O N log N.

Now, this is the ideal case or ideal aim which an algorithm developer aims at. Most critical

algorithms will have much higher computational complexity than O N or O N log N. But

there are few beautiful  iterative algorithms available  specifically  on its  structured grid or

geometric  multi-grid  it  can  lead  us  to  O  N  complexity.  Now  given  the  computational

complexity of these direct solvers being O N cube.

These are normally preferred for smaller systems. Whereas if you got a large system which is,

which  we  typically  encounter  in  CFD  analysis.  Just  remember  if  you  want  to  have  a

numerical simulation of a typical industrial flow problem even with Reynolds average Navier

Stokes simulation the number of grid points would be in many thousands may be close to a

million. So, order of the system algebraic system in such a case would be order of millions.

Similarly, if you want to perform a large area simulation or direct numerical simulation the

order of the system would be in billions. So, in such cases we can simply, we cannot afford to

user direct solver. We would use iterative solvers for such large scale problems. Now let us

have a look at our specific case of FDM, FVM or FEM discretization.

(Refer Slide Time: 08:34)

When we apply any of these discretization schemes to our governing equations what we get

is a sparse system and as I just mentioned few moments ago order of the system is usually



large  in  millions  and  billions.  Hence  direct  solvers  such  as  Gauss  elimination  or  LU

decomposition are rarely used.

(Refer Slide Time: 09:00)

In fact they are not at all suitable for these systems due to their computational complexity

which is order O N cube and it’s storage requirement which are of order O N square. Even

our the system matrix might  take only storage of O N and the elimination process or in

decomposition process we get the intermediate matrixes which might require much larger

amount of storage.

So, hence these methods they are not used per say as solvers for large scale CFD applications.

We will see one is specialized over than in Gauss elimination for one dimensional problems

which  leads  us  to  our  TDMA.  And  similarly  this  LU  decomposition  one  is,  some  is

specialized more than what we call incomplete LU decompositions. They are used as pre-

conditioners for iterative solvers. So, that is in practice that is the only use such of direct

solvers in CFD.
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So, special variants for direct methods for a specialized situations we have got like our Tri-

diagonal  matrix  algorithm which  we say  TDMA in  short  for  one  dimensional  problems.

Because in one dimensional we have used a central difference approximation, but the 3 point

computational stand we get a tri-diagonal matrix and this TDMA we will see little later that

let us got a computational complexity of O N.

We can also  derive  for  multi-dimensional  problem some iterative  schemes  what  we call

alternative  direction  based  schemes  which  are  based  on  TDMA  for  multi-dimensional

problems. We would not take up these schemes in the present lecture. If you are interested,

you can have a look at this algorithm in the book of Ferziger and Peric or in the book by

Chunk.

Or in fact, you pick up any CFD book that will give you some application of this area which

is  based  on  TDMA.  And  similarly  specialized  versions  of  LU  decomposition  for  band

diagonal  systems  are  also  available  for  band  diagonal  systems  which  were  obtained  on

unstructured grid when we apply finite volume or finite element discretization. For details

please have a look at the numerical recipe book by Press et al.

Now let us come to those tri-diagonal matrix algorithm, which is applicable for its special

case of one dimensional problems. Now let us derive this algorithm, I mean issue.
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And this particular algorithm is just a special case of Gauss elimination. In fact, this is just

the Gauss elimination apply to our current situation. So, it is essentially Gauss elimination

procedure applied to tri-diagonal systems. So, our generic equation let  us see how do we

write our generic equation on 3 point computational stencil PEW. P stands for i, E stands for

i+1 and W stands for i – 1.

In short in form we write this equation as AWi for a generic scalar quantity phi i – 1+APi phi

of i+AEi phi of i+1 = Bi. Where I, where it is let us say 1 to n. So, this is our equation. If we

look at the matrix first say now let us what it in matrix form. AP1, AE1 we will get only these

2 entries in the first row phi 1, phi 2 and so on. These are phi i to phi n. On the right hand side

we got this Bi, B1, B 2 so on, Bi to Bn.

Let us complete our tri-diagonal structure the matrix.  So in the second row we will have

AW2, AP2 and AE2 and so on. So, that is how we will proceed in the i th row we will have

AWi, APi, AEi last one we have got our APn and to the best we have got AW of n. Now in

Gauss scenario elimination what we want to do we would like to eliminate all he entries in

the lower half of the matrix.

So, we would like to eliminate, now here we have got only slow diagonal to be eliminated

and for that what we do differences we want eliminate this AW2 entry from the second row.
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So, for that as a process of Gauss elimination for second row, we do not have to do anything

for the first row because this entries they form the part of the upper triangular matrix, so, that

we will leave us such. We want eliminate AW2 what do we do? We have to multiply the first

row R1 by AW2 by AP1 and subtract it from R2. R2 is our row 2. Now you can clearly say

that which entries would be affected of the row 2. 

When we perform this subtraction process AW2 would be eliminated that will become 0. AP2

would be affected that is all. The AE2 will not be affected because the corresponding entry,

the entry in the same column in the first row of 0. So, what we get modified entries would be

that AW2 becomes 0 and our AP2 this is now assigned a value for the existing value of AP2 –

AW2 into AE1 divided by AP1. 

Our right hand side will also get modified in same way because we are performing the same

two operation on the load vector as well. So, this B2 would be modified as B2 – AW2 by AP1

into B1. So, we can clearly say that the same process can be applied to any other subsequent

rows for instance for eliminating the AWi entry from the ith row. You will multiply the i – nth

row by AWi divide by APi – 1, so AWi gets eliminated. 

So thus in general thus for i = 2 to N. What we need to do or forward elimination process

becomes APi this becomes APi – AWi into AE of i – 1 divided by AP of i – 1. Bi this becomes

Bi – AWi into Bi divided by APi – 1. So, this is our forward elimination processes which we

need to apply for all the rows starting from second row up to the last row. So, once we have



completed this forward elimination how do we obtain the solution? In the last review, we are

left with the only 1 entry that is APn phi n = Bn. 

So,  now  our  solution  is  obtained  solution  by  back  substitution.  We would  proceed  in

backward order, like first we will obtain phi N. So, phi N is now given by BN divided by

APN. And how about the remaining entries let us say the ith row we are left with the only

entries APi and AEi. So, our ith is equation is now with modified coefficient that is APi phi

i+AEi phi i+1 = Bi. So, this leads to equation for phi i = to Bi – AEi into phi of i +1 divided

by APi.

Now we need to apply this formula for i = N – 1 to 1 in this order. Okay, so this is just well

standard  Gauss  elimination  process  applicable  to  a  specialized  case  and  the  number  of

operation which you have formed they are proportional to the number of unknowns in our

system. So, if you want to program this method this Pseudo code for this TDMA algorithm

becomes very simple.

And I would encourage you to write a subroutine or a function based on TDMA.

(Refer Slide Time: 23:09)

So, thus I would give as an exercise. Write a function or subroutine based on TDMA for

solution  of  tri-diagonal  system  arising  in  let  us  say  finite  difference  analysis  of  one

dimensional  problems.  For  your  benefit  if  you  can  write  this  Pseudo  code  in  forward

elimination. We just need to apply the elimination part of the formula. So, we can say for i =

2 to N do or modify A.



So,  APi  that  gets  modified  us  APi–AWi into  AEi–1  divided  by APi–1 and your  Bi  gets

modified us Bi–AWi into Bi divided by AP–1. And then our back substitution phase phi i =

BN divided by APN and then for i = N-1 to N do phi i is Bi – AEi into phi of i+1 this whole

thing divided by APi. So, you can see this is very simple to code in fact the total number of

code lines would be 4+4, 8.

So, in total of 8 code lines you can write this algorithm in a FORTRAN or C language. And

there is something’s which are commonly being multiplied you can take them out and may be

write  introduce  it  additional  line  of  code  but  reduce  the  number  of  multiplications  and

divisions by doing that. For instance, is AWi divided by APi–1 which we had not forward

elimination for each i. It can be calculated only once.

This division process can be done only once and this local variable can be multiplied with

respective entries.

(Refer Slide Time: 27:55)

So,  forward  elimination  where  by  modify  this  APi  the  diagonal  coefficients  and  as  a

consequence our right hand side also gets modified. Once you have completed at this we can

easily get our solution by a Back-substitution process. Now, let us move on to the iterative

solvers  and  they  are  simple  classification  of  these  iterative  solvers,  they  are  put  in  2

categories.
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Basic  iterative  solvers  and accelerated  iterative  solvers  or  advanced iterative  solvers.  So,

basic iterative methods solve typical examples are Jacobi’s method, Gauss-Seidel method and

SOR. These methods are very easy to program. We will see the algorithms in a short while

from now. So, they are very easy to program. They require very little computation time per

iteration. But they have very slow convergence.

So, for very large systems which we have in CF difference we want to solve the pressure

Poisson equation involved in large AD simulation or DNS system is of close to a billion, a

few billions this Gauss-Seidel, Jacobi and SOR would require many millions of iterations.

And because of slow convergence with exception of SOR Gauss-Seidel and Jacobi these 2

methods are there variance. They are not used as standalone solvers.

By standalone solver we mean that they are used as an equation solver. So, only SOR with

then optimum value of what we called over relaxation parameter. It is used in CFD course.

Jacobi and Gauss- Seidel we do not use as standalone solver. All these basic iterative method

they are primarily used as what we call is smoothing or relaxation procedures in multi-grid

techniques. We will take of these multi-grid techniques in the next lecture.

So, both say this category of iterative method they are primarily used as this smoothing or

relaxation techniques. And this one more usage which we have got these measures can also

be used as pre-conditioners with Krylov subspace methods. We will have a look at 1 or 2

methods  of  Krylov  subspace  family  namely  conjugate  gradient  methods  for  symmetric

systems and bi-conjugate gradient method for general systems.



And  Jacobi’s  method  is  used  very  often  as  a  pre-conditioner  to  these  Krylov  subspace

methods. One more feature, attractive feature of these basic iterative methods are that they

are very easy to paralyze. That is to say if you want to use the massively parallel computer

with multiple codes wherein we would like to solve as 1 sub set of problem on different

codes.

This Jacobi, Gauss- Seidel or SOR methods can be easily written for such machines. In fact

their version would not be very different from the version written for a serial machine. So,

that is the advantage which these basic iterative methods for this. Their only down side is

their convergence rate is very slow.

(Refer Slide Time: 31:52)

Next is our accelerated iterative methods, why we call them as accelerated? We will get to

know when  we  take  up  each  of  these  methods  for  instance  say  this  conjugate  gradient

method. In this conjugate gradient method and GMRES method the corrections show some

specific directions to accelerate the convergence of iterations. So that is why verified to these

methods as accelerated iterative methods.

Similarly, multi-grid techniques they employ the solutions at multiple grid labels. We will

have a sequence of unstructured grids and the corrections or computed at different grid levels

which will enhance the convergence of the iteration process. Now the multi-grid methods can

be used as standalone methods on structural  grid.  They have got 2 formats of multi-grid

techniques.



One is what we call geometric multi-grid wherein we use a sequence of unstructured grids.

So, if that were possible that if it were possible for us to generate a sequence of hierarchical

grid structures. Then we can go for what we call geometric multi-grid. On simple rectangular

geometrics we can easily generate a hierarchy of nested grids in the context of structured grid

techniques.

It is more difficult we have got unstructured grids for instance we want to use finite volume

or finite element method unstructured grid. We can still device multi-grid techniques on that

but  some  of  the  operators  which  are  required  for  multi-grid  techniques,  their  derivation

becomes a bit more tedious task. In such situations recently a new set techniques have been

proposed which are called algebraic multi-grid techniques.

Now these algebraic multi-gird techniques they do not require us to supply a sequence of

hierarchal grids. All that we need to supply is our matrix and it creates so called coarsening

and prolongation operators just based on this structure of the matrix itself. So, such technique

that is why everything is being done algebraically, so these are called algebraic multi-grid

techniques.

And today most of the commercial CFD packages employs some form of multi-grid method

or Krylov subspace method. In fact, most of them what they were do they use this multi-grid

method as a pre-conditioner for Krylov subspace method. Now let us come back to our basic

iterative solvers because we might or we would use some of them as pre-conditioners for

Krylov subspace methods or multi-grid methods.
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So, let us see few basic iterative methods like the first one is our Jacobi’s method, the second

one is Gauss-Seidel method and third one is Successive Over Relaxation method. So, let us

have a look at the algorithm for these methods. The first one is Jacobi’s method.

(Refer Slide Time: 35:28)

So, our system this write it as Ax =b. So, if you want to write it in index notation we can also

write it as the ith row of the system or rather let us call it ith equation that will write as sigma

Aij x j = bi. Now let us separate the x item. So, we can rewrite the left hand summation as

sigma j =1, 2 i – 1 Aij x j+Aii x i+sigma j = i+1 to N Aij x j = bi. Let us transfer the terms

which do not involve xi on the right hand side. So, you get Aii x i = bi – sigma.

These 2 summations we can combine and we can write them in short hand form J = 1 to N

with the condition J not = I, Aij xj or xi = 1 by Aii bi – sigma j = 1 and J0 = i to N Aij x j.



Now  these  basic  relations  can  be  utilized  as  an  iterative  scheme  and  this  what  Jacobi

proposed that look if we had the guest value or if we start off with some guest value of for the

vector x.

Based on those guestimates we can obtain an improved estimate for the different components

of the vector.
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So, iterative scheme becomes Guess x0. Now let us put our iteration counter as a subscript.

So, let us get Guess an initial value which we will denote by subscript of 0 and then we will

tried we will obtained the next iterate x i K+1. This can be computed in using the values at

the previous iterations 1 by Aii bi – sigma j = 1 J0 = i to N Aij x j k.

So, this is a simple algorithm. We cannot think of anything simpler and if you compare with

what we discussed for non-linear systems very similar to our Picard iteration or vice versa

Picard iteration might have been obtained driving inspiration from Jacobi’s method, okay.

And as we have noted this scheme is very simple at one moment. We need only the entries

corresponding to the ith row.

That is coefficient Aii, Aij for all j’s and we need the corresponding components. So, that is

why computations involved, computations in each iteration are very fast. So, here we can say

that K= 1, 2 and so on till convergence. The down side we have already noted convergence is

very slow. Is there something which we can do to improve the convergence of this Jacobi

iteration?



One of the simplest possible things would be in specifically in computer implementation the

moment we have generate it a new estimate x i k+1. We do not put to this value that k+1 of

iteration in a separate vector in fact old values or over written, okay. So, should we not use

the already available new values and if we can use the new values hopefully the convergence

can be improved. So, that was the basic premise of the Gauss-Seidel method.

(Refer Slide Time: 42:50)

Our basic equation remains the same. The starting point that is our, we started off the simple

equation the ith equation was j= 1 to n Aij x j = bi and this using this we got a modified form

for xi or xi can be written in terms of the remaining components of the vector. So, 1 by Aii bi

– sigma j = 1, J0 = i to N Aij x j.

So, when we used the values at previous iteration that is sometimes also referred to in Jacobi

iteration that we are trying to annihilate the residual involved in ith equation by using the

values at the previous iteration level. What was suggested by Gauss and Seidel was that look

use the values which have already been computed at a given xi count. If we will start from i =

1, 2 and so on, so this equation holds good could for all i values.

So, our iteration process what do we do, it is starting from initial guess x of 0 for k = 1, 2 and

so on iterate till convergence and what is our iteration process. We should have xi at k+1 = 1

over Aii within bracket bi – now let us break this summation term into 2 parts. One which

would use the values of already obtained at this iteration level. That is sigma j = 1 to i–1. For

these indices j = 1 to i–1 we would have obtained a new iterate, so use that value.



That is Aij x j k+1. And then the next part-sigma j = i+1 to N Aij x j k. So, this simple

modification to Jacobi algorithm leads to rate of convergence which is slightly faster than

Jacobi’s method  and what  is  our  celebrated Gauss-Seidel  method.  There  are  versions  of

Gauss-Seidel method which are specifically designed for parallel computers.

Some of them what we called red-black ordering of the notes rather the planes in multiple

dimensions.  So, if you are interested you can have look at  these versions in some of the

standard books which will mention at the end of this lecture. The next method or the last

method if you are going to have a look at in this series is what we called successive over

relaxation. It is popularly known by acronym SOR.
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And what is the fun about the successive over relaxation techniques if I look, whatever value

or iterate or the new solution which we have obtained let us x i k+1 by Gauss-Seidel iteration

do not take that is our final values. In fact, the final at a given iteration level should be of

weighted average of the value which we obtained from Gauss-Seidel and the value at the

previous iteration.

This simple modification works wonders in the convergence of the scheme. So, if I write this

such x i k+1 in our Gauss-Seidel algorithm let us put it under subscript rate. So, in terms of

this our successive over relaxation methods say that look now x i k+1 is omega times x i of

k+1 Gauss-Seidel+1–omega times x of k where omega as a scalar quantity between 1 and 2.

So, omega is always taken greater than 1. So, that is why it is called as over relaxation factor.



(Refer Slide Time: 50:00)

A previous short in form I wrote just to stabilize the close link between the SOR and Gauss-

Seidel. For programming purposes we can now write the expanded form that x i k+1 SOR =

omega divided by Aii within brackets bi – sigma j = 1 to i – 1Aij x j k+1 – sigma j = i +1 to N

Aij x j k+1 – omega times x k i. So, there is certain difference here.

Even this x i k+1 j s prime I would like to write that as because here in this formula this x j

k+1 in the right hand side they are the once which have the current iterates obtained by our

SOR algorithm. And now on a structured grid on uniform structured grids, optimum estimate

of omega is available. In fact, there are formulas, there are theoretical formulas which you

can  find  in  any  book  which  gives  SOR method  theoretical  formula  to  compute  omega

optimum in this case.

But on general grids if we do not have wherein we cannot find out an estimate of omega opt,

rule of thumb value for omega is you take some value close to 1.7 or 1.8. This would give us

a reasonable rate of convergence. This was something similar waiting in our case of non-

linear problems. The non-linear problems we take omega to be less than 1 so that process is

referred to us under relaxation.

But in the case of linear systems we always use over relaxation. That is weighting omega

would be chosen to be greater than 1, okay.
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So, that brings us now to the close of our lecture on the direct solvers and basic iterative

solvers. For further details, you can have a look at these 2 books.
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The  Press  et  all’s  book  on  Numerical  Recipes.  This  gives  the  methodologist  methods

algorithms as well as codes for direct solvers and iterative solvers. For detailed description of

iterative  methods  for  Sparse Linear  Systems  this  is  what  we encounter  in  CFD.  This,  it

another nice book, book by Saad published by SIAM in 2003.

This is a definitive reference for basic as well as advanced iterative methods with specific

applications to this  sparse systems obtained from finite  difference,  finite volume or finite

element discretization of partial differential equations. So, for details you can have a look at



this book. This pdf is easily available on the net and then this nice collection of routines on

the web.

There  are  many  sources  but  this  one  very  reliable  resource  that  is  called  Netlib,

http://www.netlib.org. So, you can find many routines related to the solution of linear systems

on this side as well which can inspire you or help you develop a better  understanding of these

methods as well as to develop your own computer course. So we stop here and this lecture

and the next lecture we will take up accelerated iterative methods for sparse linear systems.


