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Lecture – 21
Computer Implementation of FDM for Steady State Heat Diffusion Problems - 3

Welcome to  the  last  lecture  in  module  3  on  finite  difference.  So concluding  lecture  on  the

computer implementation of finite difference method for 1-D heat conduction problems. Let us

have a recap of what we finished in the previous lecture. We discussed a bit more about data

structures and their implementation in a C++ code.

(Refer Slide Time: 00:47)

And we also finished implementing the major modules in a C++ program for solution of 1-

dimensional problem using developer C++ IDE. Now in this lecture, we would try to finish the

remaining  modules  basically  submodules  which  require  the  implementation  of  boundary

condition. So this is our last lecture in the series on computer implementation of finite difference

method for steady state heat conduction problems.

So we will focus on the pseudo-code and C, C++ implementation for incorporation of boundary

conditions for both standard as less cell-centred finite difference formulations and then we will

complete our code that could be complete in all respects, we will compile it together and test for

few, 1 or 2, sample problems and we would compare the numerical results for a test problem



obtained with standard and cell-centred finite difference formulation.
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So if all the dynamic code design, we had implemented our input module.

(Refer Slide Time: 01:57)

We had implemented the outline for the module system matrix for generation of finite difference

discrete system and we need to complete the incorporation of boundary conditions in this module

and then we said we are going to just call an already available module TDMA-based function to

solve our system's equations. Like if you have already seen the previous lecture, the pseudo-code

for input and systemMatrix module.
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Now we are going to work on the implementation of boundary conditions. We will have a look at

the pseudo-code for that.
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And we would implement it in the code for both the cases, that is BCs normal, that would stand

for standard formulation and the cell-centred formulation. Now before we go for implementation,

let  us  first  have  a  look  at  what  modifications  we  need  to  incorporate  in  our  code  for

implementation of boundary conditions.
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Now the end result  would be the modification  in  the discrete  equation,  we had our  generic

discrete equation for a node i, this was given as ApTi+AwTi-1+AETi+1=Bi for a generic node i.

B stands for the current node, E stands for this stern neighbourhood i+1 and W stands for its left

neighbour or a western neighbour.

Now what  do you mean by boundary condition  that  we have  to  now modify, the  boundary

condition would be specified at the end of the domain. So we need to modify the nodes, the

computational nodes which are in the vicinity, obtain modify discrete equation. So we will have

a modified discrete equation for boundary nodes. So let us take the 2 cases separately. First let us

deal  with  our  standard  finite  difference  grid  wherein  we  have  the  nodes  aligned  with  the

boundary.

So for a finite difference formulation, I will put the pseudo-code only for 1 or 2 cases here. Let

us say, the 2 possibilities and we have to deal both the possibilities separately, okay. So let us

take the case when, let us call this case 1 or case A, left boundary. By left boundary, we mean we

have to obtain a discrete equation or modified equation for node 1, node 2, node 3 and so on.

This  is  our  interior  of  the  domain.  Now  depending  on  the  boundary  conditions  which  are

specified at node 1, we will have a different set of equations or different form equation for this

particular node. So let us have our BC Type=0 that is we have T1-TB. Now if this is given, of



course this becomes our discrete equation, okay and if we compare with standard or generic

discrete equation which we have derived for all the nodes or would have computed in our code

earlier for all the nodes, okay.

So on comparison what we say, that this coefficient node of right in a pseudo-code format, so

that we can translate it easily into a code. So basically all that we need to do is set the coefficient

AP of the node 1 as 1, AW and AE should be set to 0 and B 1 should be set to TB, that is all we

need to do. So if AP1, this is set to 1.0, this left arrow, this is a standard notation in computer

program that assign 1.0 to AP1, AE1=AW1 and these would be assigned 0 values.

Our B1 would be assigned the boundary conditions specified at this node T subscript B. So now

this is one particular case or one condition. The second condition could be, we have got the flux

specified. So flux conditions, we have to be careful the way we define the flux and take care of

the directional normal. Normal is now directed in negative X direction. So we have got a flux

definition q is given by -K del T/del n or dT/dn.

Now here n is  aligned in negative x direction so we would get in terms of x, this becomes

K*dT/dx at point 1. Now we have got this derivative here and it has to be approximated and we

have  got  no  choice  other  than  using  a  forward  difference  schemes.  So  we  are  going  to

approximate this as K*T2-T1/delta x.
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So now let us take 2 sub cases, the first sub case BC Type 1, BC Type=1 which stands for flux

specifications that is normal boundary condition, q at i=1. This q is given as qb. So if you set this

value to our finite difference approximation, we get K*T2-T1/delta x=qb and this gives us our

standard equation T1-T2=-K*qb/delta x.

So pseudo-code for modification, is AP of 1, we set it as 1.0, AW at node 1 at 0.0 and AE at node

1, this will be set as -1.0. B for this node 1, that is -K*qb/dx. Now the next possibility, the last

one is our convective boundary condition which stands for BCType in our code, we have set that

as 2, is our (()) (12:35) flux, so this stands for convective BC q=h*T-Ta at node 1, so that simply

means our K*T2-T1/delta x=h*T1-Ta.

If you rearrange it, we get T2-T1=h delta x/k*T1-h delta x/k*Ta that is 1+h delta x/k*T1-T2=h

delta x/k*Ta. So a pseudo-code that is AP of 1, this has to be set a value which is a coefficient of

T1 in this equation, 1+h*dx/k, this is the value which you assigned to AP of 1. AE of 1 would be

assigned a  value  -1.0,  AW of 1,  we set  at  0  and B of  1  which  includes  now the  effect  of

convective boundary condition, this would be set as h*dx*Ta/k. 

So these are the lines of code which we need to incorporate in our program. So now let us get

back to our program and see the actual implementation.
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That is incorporation of boundary condition on standard finite difference grid modified entries of

systemMatrix A and RHS vector B for boundary nodes.
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So we have called this routine as getBCNormal,  normal stands for standard finite difference

formulation of inputs grid matrix and boundary condition type and what we have discussed so far

is our left incorporation of boundary conditions at left end. So let us increase a local variable

type=bcs0.type and Dirichlet BC, so we can set this if we assume that Dirichlet BC to be present

anywhere, we have seen that AP1 that is set to 1.0.

And rest of the coefficient AW and AE at node 1, they are set to 0.0 and the source term that



becomes our specified temperature value. So that is what we saw in our pseudo-code. Now if we

have the type=1 that is we have got Neumann BC, then we need to change, AW we have already

set to 0, so we need to change AE and B. AP we have seen in this case remains as 1.0. So we do

not need to write a separate line in this block.

So we just change AE, so M.AE1=-1.0 and M.B1 that is given by -qb dx/k, so we have put in the

access specifier set bcs0.qb that will give us the specified heat flux at the left node, grid.dx that

gives grid spacing and grid.k that has told the thermal conductivity.

(Refer Slide Time: 17:14)

Next, when we come to convective boundary conditions, we need to change AE, AP and B, these

3. AQ, we have already set to 0.0, so we do not need to worry in this block. Let us define a local

variable hdxk which includes h*dx/k, so hdxk stands for BCS0.h. Remember this 0 index is

being used for boundary condition at the left node, into grid.dx/grid.k and AE, M.AE1 that is the

coefficient corresponding to the stern neighbour that becomes -1.0 coefficient corresponding to

the current node that is 1.0+hdxk.

And  our  boundary  condition  which  now  influence  our  source  term  that  becomes

M.B1=hdxk*bcs0.Ta. So whatever pseudo-code which we have known, incorporated that in our

code boundary conditions for the left node. We need to do the similar exercise and we ought to

obtain the pseudo-code expression for boundary conditions at the right node.
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So we are still with standard finite difference formulation. So BCs at right end node, so let us

draw sample grid, this is our grid point and its index would be an n+1 if the number of division is

N, this left node will have an index of N and so on. Boundary conditions would be specified

here.  So let  us have 3 cases.  The first  one is  our BC Type=0, we simply say that  TN+1 is

specified as given boundary temperature.

So this where the case, all that we need to do is set the corresponding entry. So let us use a

simpler term, let us call it, let us define that nx=n+1, so AP of nx set its value to be 1.0. AWnx

and AEnx value both provide the 0 value and our right-hand side vector is Bnx, we need to store

in it the specified temperature value.

Now the next one, flux type boundary condition, flux type BCs, so now in this case, we need to

come up with an approximation for the flux term itself which involved derivative. Now this q=-

kdT/dn, now in this case, our vector n is aligned with positive x direction. So dT/dn and dT/dx,

they would have the same meaning or they would-be identical. So this -KdT/dx and this now

dT/dx, we will have to approximate it using a one-sided difference.

So we will use backward difference approximation using the values at node n+1 and node n. So

this will be approximated by Tn+1-Tn/delta x. So now let us take 2 sub cases. The first one is



Neumann BC which corresponds to an integer flag BC Type=1, we have q=qb. So this simply

tells us that k*Tn+1-Tn/delta x, this is equal to -qb or we can write this as -Tn+T of N+1= -qb

delta x/k. So if you compare with what we had obtained, the expression for the left and is its

presence fairly similar, on the indices have changed.
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So the pseudo-code now which we need to incorporate in our function, our AWnx, this should be

set  with the value of -1.0.  APnx, this  should be set  a  value of 1.0 and Bnx, this  should be

assigned a value -qb*delta x/k.  Now the next case is convective boundary condition,  it  says

q=h*T-Ta, so this has K*T of N +1-TN/delta x=-h*TN+1-Ta. Remember in our, I think we had

just transposed the signs.

Alternatively, we can rearrange it  as -TN-T of N+1=-h delta  x/k*T of N+1-Ta. Rearrange it

further to put in standard form. So -TN +1+ h delta x/k*T of N+1=h delta x/k*Ta. So compare

this expression with our standard discrete equation for this node and then we can say that from

what we need to modify that is our AP of nx, remember this nx, we have introduced as a alter

notation for an index N+1. So remember that, nx stands for N+1. So APnx should be assigned a

value 1.0+h*dx/k.
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AWnx should be assigned a value of -1.0 and AEnx, this will be set to 0.0 and our load vector

element of B at this point nx, this should be assigned a value h*dx*Ta/k. So now this completes

our pseudo-code, these 4 lines are the ones which we need to directly put in our code to take care

of the incorporation of the effect of convective boundary condition.
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So let us get back to our code. So incorporation of BCs at right n. So type=bcs1, this argument of

1 stands for the boundary condition at right end. So get type of boundary condition and as we

said we are going to now introduce a local integer nx=gride.nnodes. So nx is actually, this stands

for the value Capital N+1 where n is a number of divisions.



Now let us put the Dirichlet BC, that is the simplest one and let us assume that for a default BC,

so in that case our M.APnx that is provided with a value 1, remaining coefficients was set to 0

and M.Bnx is set to bcs1.TB. Now change for other 2 types of boundary conditions, if type=1

that is our Neumann BC.

Now in this case for the Neumann BC, we have already seen a pseudo-code, that APnx that

should be set to 1 that we have already done. So we need to just change the values of AWnx, so

M.AWnx=-1.0  and  next  M.Bnx  which  includes  the  effect  of  qb,  so  -bcs  subscript

1.qb*grid.dx/grid.k.
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Now in case of, we have got convective boundary conditions. So we need to change that again 

AW and AP and B. So let us define the short hand notation variable hdxk which stands for 

h*dx/k our x is specifiers, so h would be bcs subscript 1.h*grid.dx/grid.k. So M.AW for the node 

nx is -1.0. M.APnx that becomes 1.0+hdxk and M.Bnx=hdxk*bcs1.Ta. So now we have finished 

our coding part for the incorporation of boundary conditions with standard grid that is our vertex 

centred grid.

Similar  exercise  we  can  repeat  for  the  cell-centred  finite  difference  grid.  I  will  not  do  the

complete derivation for the pseudo-code, that I would leave as an exercise but few salient points

I would just like to mention which you should remember for cell-centred grid.
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For cell-centred finite difference formulation, please remember at 2 ends, at left end, at both the

ends, we are going to introduce what we call ghost points. Remember the computational nodes

are in the centre of the cell, this is our problem domain, this is our boundary, left boundary. The

boundary  conditions  are  specified  here.  So  we  will  introduce  a  ghost  node  of  zero  and

temperature at boundary, let us call it as T of b. Now Tb would be approximated as an average of

the temperature at point grid node 1 or ghost node 0. 

So Tb would be given as T1+T0/2 and we can easily use central difference approximation for

derivative. So dT/dx at,  let us call as x=xa, our left end, this would be approximated as T1-

T0/delta x. So you need to just take care of these 2 definitions in deriving the expressions and the

corresponding pseudo-code for incorporation of either Dirichlet boundary condition or Neumann

or convective boundary conditions.

Similarly,  a  right  end,  let  us  redraw  our  domain.  So  we  are  at,  now  x=xb,  this  is  our

computational node for the index N, N+1 nth node becomes now our ghost node. Now what will

be the temperature values at the boundary T at x=xb, this has to be approximated as TN+TN+1/2.

Use CDS for derivative and all  that it  means is dT/dx at  x=xb, this  can be approximated as

TN+1-TN/grid spacing delta x.
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So what we will do, our general procedure would be, general procedure for obtaining expression

or expressions for boundary nodes would be substitute for their value of T at ghost node. That is

T0  at  left  end  and  TN+1  at  right  end,  obtained  from  specified  BCs,  specified  boundary

conditions into standard discrete equation, APTi+AWTi-1+AETi+1=Bi, okay.

So at  one end of  Ti-1,  left  end,  Ti-1 would become T0 eliminate  or  we have to  get  at  the

expression for  T0 from either  Tb=T1+T0/2,  Dirichlet  boundary conditions  were specified  or

from the flux specifications,  solve for T0, substitute that in this equation and get a modified

discrete equation for that node. So I would leave the completion of this task as an exercise. So

obtain final expressions for incorporation of BCs and put them and rather implement them in our

C++ code.

Remember this  C++ code would be available  to you, what we are looking right now in the

lecture on NPTEL site, so you can download it and do your modifications. I will just give you a

brief look at the skeleton of what I have done, that BCCentred and this is exactly in the same

way, this  is a bit  more elaborate  compared to the standard format but the remaining code is

exactly similar to what we had looked in detail for standard boundary condition.

Now this completes our code, okay and you can compile it and run it and test it for a certain set

of problems. Now let us do a sample run and if you perform a sample run, our state will give you



some results for 2 sample test problems.
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So the first test problem is the steady state heat conduction in slab of width 0.5 with temperature

dependent heat generation that is q is 1273-T watt per meter cube and the left end of the slab is

maintained at a T=373 Kelvin, right end of the slab is being heated by a heater for which the heat

flux is 1 kilowatt per metre square and thermal conductivity is constant, it can be taken as K=1.

So just input all these values in our code and this is what do we get for a standard grid by taking

5 grid divisions, okay.
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The temperature values range from 497 to 928, exact solution for this problem can be easily



obtained that is again left as an exercise to you, it is all decoded there is a part of the code,

simple function is  available  which gives the exact  solution and that  our output routines also

computes  the  percentage  error  based  on  the  exact  solution.  So  for  this  choice  of  the  grid,

percentage error ranges from 0.34-9.94.

Now you can observe one thing that error increases from node 1 to node 5 and the reason is close

to this node, in fact the nodes 2 3 4 5 6, node 0 which is close to, x=0.1, we had temperature

specified. So at this end, errors are less but at the right end where we had approximated our flux

by the first-order backward difference scheme, we get fairly large value error.
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Now FDM results for the cell-centred grid, now the grid points are in the middle of the cell 0.05,

0.15, 0.25 and so on, okay. So you can easily say that errors are very small,  they are much

smaller compared to the solutions which we have obtained with standard finite difference grid

and specifically prominent is this last figure, at close to the right boundary where the flux was

specified.

Now we get error less than 0.1% and the reason for the sake of accuracy is that at the right end,

flux has been approximated by a second order accurate central difference scheme.
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Take another set of results which you can obtain, you can try run the code for this particular test

case,  a  slab  of  width  1  m with  constant  heat  generation.  This  is  a  test  case  for  convective

boundary condition. The left end of the slab is maintained at a T=373 degree and the right end is

losing heat by convection to ambient at 273 Kelvin. The heat generation is a constant, 500 Watt

per meter cube and the thermal conductivity can be taken as 1. The convective heat transfer

coefficient, let us say we have taken 30.
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And this is the result obtained with our standard grid. So now this is where we are now going to

put our end to our discussions on finite difference but before we close, I would like to leave

certain exercises for you.
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These  exercises  pertain  to  writing  an actual  implementation.  So let  me call  them as  coding

exercises. Number first, extend 1-D code to a 2-D code. So design philosophy you can follow the

same the way we have discussed but now the things will  change, the data  structures  would

change, the solvers would change and you can use or you can implement an iterative solver for

solution of 2-D steady state heat conduction.

A simple exercise could be to modify this code to solve 1-D steady state advection diffusion

problems. Now some of the solvers, we will discuss in the next module which you can make use

of.
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Now this broad references for what we have, you can get lot more material, many more finite

difference  algorithms and the  approximation  schemes  in  these  2 books,  particularly  Chung's

book Computational  Fluid Dynamics,  it  is  a compendium of a  huge collection  of difference

approximations together with finite volume and finite element methods for CFD applications and

more readable accounts, much shorter account you can find in Ferziger's and Peric's book.

You can also try it another book on CFD, Introduction to Computational Fluid Dynamics by John

D. Anderson which is a lot simpler to read than either of these 2 books. So for now this way we

would put a full stop to our discussions on finite difference method and in next module, we will

focus on the solution of discrete algebraic systems.


