
Computational Fluid Dynamics
Dr. Krishna M. Singh

Department of Mechanical and Industrial Engineering
Indian Institute of Technology - Roorkee

Lecture – 21
Computer Implementation of FDM for Steady State Heat Diffusion Problems - 3

Welcome to the last lecture in module 3 on finite difference. So concluding lecture on the

computer implementation of finite difference method for 1-D heat conduction problems. Let us

have a recap of what we finished in the previous lecture. We discussed a bit more about data

structures and their implementation in a C++ code.

(Refer Slide Time: 00:47)

And we also finished implementing the major modules in a C++ program for solution of 1-

dimensional problem using developer C++ IDE. Now in this lecture, we would try to finish the

remaining modules basically submodules which require the implementation of boundary

condition. So this is our last lecture in the series on computer implementation of finite difference

method for steady state heat conduction problems.

So we will focus on the pseudo-code and C, C++ implementation for incorporation of boundary

conditions for both standard as less cell-centred finite difference formulations and then we will

complete our code that could be complete in all respects, we will compile it together and test for

few, 1 or 2, sample problems and we would compare the numerical results for a test problem

obtained with standard and cell-centred finite difference formulation.

(Refer Slide Time: 01:47)

So if all the dynamic code design, we had implemented our input module.

(Refer Slide Time: 01:57)

We had implemented the outline for the module system matrix for generation of finite difference

discrete system and we need to complete the incorporation of boundary conditions in this module

and then we said we are going to just call an already available module TDMA-based function to

solve our system's equations. Like if you have already seen the previous lecture, the pseudo-code

for input and systemMatrix module.

(Refer Slide Time: 02:27)

Now we are going to work on the implementation of boundary conditions. We will have a look at

the pseudo-code for that.

(Refer Slide Time: 02:37)

And we would implement it in the code for both the cases, that is BCs normal, that would stand

for standard formulation and the cell-centred formulation. Now before we go for implementation,

let us first have a look at what modifications we need to incorporate in our code for

implementation of boundary conditions.

(Refer Slide Time: 02:55)

Now the end result would be the modification in the discrete equation, we had our generic

discrete equation for a node i, this was given as ApTi+AwTi-1+AETi+1=Bi for a generic node i.

B stands for the current node, E stands for this stern neighbourhood i+1 and W stands for its left

neighbour or a western neighbour.

Now what do you mean by boundary condition that we have to now modify, the boundary

condition would be specified at the end of the domain. So we need to modify the nodes, the

computational nodes which are in the vicinity, obtain modify discrete equation. So we will have

a modified discrete equation for boundary nodes. So let us take the 2 cases separately. First let us

deal with our standard finite difference grid wherein we have the nodes aligned with the

boundary.

So for a finite difference formulation, I will put the pseudo-code only for 1 or 2 cases here. Let

us say, the 2 possibilities and we have to deal both the possibilities separately, okay. So let us

take the case when, let us call this case 1 or case A, left boundary. By left boundary, we mean we

have to obtain a discrete equation or modified equation for node 1, node 2, node 3 and so on.

This is our interior of the domain. Now depending on the boundary conditions which are

specified at node 1, we will have a different set of equations or different form equation for this

particular node. So let us have our BC Type=0 that is we have T1-TB. Now if this is given, of

course this becomes our discrete equation, okay and if we compare with standard or generic

discrete equation which we have derived for all the nodes or would have computed in our code

earlier for all the nodes, okay.

So on comparison what we say, that this coefficient node of right in a pseudo-code format, so

that we can translate it easily into a code. So basically all that we need to do is set the coefficient

AP of the node 1 as 1, AW and AE should be set to 0 and B 1 should be set to TB, that is all we

need to do. So if AP1, this is set to 1.0, this left arrow, this is a standard notation in computer

program that assign 1.0 to AP1, AE1=AW1 and these would be assigned 0 values.

Our B1 would be assigned the boundary conditions specified at this node T subscript B. So now

this is one particular case or one condition. The second condition could be, we have got the flux

specified. So flux conditions, we have to be careful the way we define the flux and take care of

the directional normal. Normal is now directed in negative X direction. So we have got a flux

definition q is given by -K del T/del n or dT/dn.

Now here n is aligned in negative x direction so we would get in terms of x, this becomes

K*dT/dx at point 1. Now we have got this derivative here and it has to be approximated and we

have got no choice other than using a forward difference schemes. So we are going to

approximate this as K*T2-T1/delta x.

(Refer Slide Time: 09:57)

So now let us take 2 sub cases, the first sub case BC Type 1, BC Type=1 which stands for flux

specifications that is normal boundary condition, q at i=1. This q is given as qb. So if you set this

value to our finite difference approximation, we get K*T2-T1/delta x=qb and this gives us our

standard equation T1-T2=-K*qb/delta x.

So pseudo-code for modification, is AP of 1, we set it as 1.0, AW at node 1 at 0.0 and AE at node

1, this will be set as -1.0. B for this node 1, that is -K*qb/dx. Now the next possibility, the last

one is our convective boundary condition which stands for BCType in our code, we have set that

as 2, is our (()) (12:35) flux, so this stands for convective BC q=h*T-Ta at node 1, so that simply

means our K*T2-T1/delta x=h*T1-Ta.

If you rearrange it, we get T2-T1=h delta x/k*T1-h delta x/k*Ta that is 1+h delta x/k*T1-T2=h

delta x/k*Ta. So a pseudo-code that is AP of 1, this has to be set a value which is a coefficient of

T1 in this equation, 1+h*dx/k, this is the value which you assigned to AP of 1. AE of 1 would be

assigned a value -1.0, AW of 1, we set at 0 and B of 1 which includes now the effect of

convective boundary condition, this would be set as h*dx*Ta/k.

So these are the lines of code which we need to incorporate in our program. So now let us get

back to our program and see the actual implementation.

(Refer Slide Time: 15:18)

That is incorporation of boundary condition on standard finite difference grid modified entries of

systemMatrix A and RHS vector B for boundary nodes.

(Refer Slide Time: 15:29)

So we have called this routine as getBCNormal, normal stands for standard finite difference

formulation of inputs grid matrix and boundary condition type and what we have discussed so far

is our left incorporation of boundary conditions at left end. So let us increase a local variable

type=bcs0.type and Dirichlet BC, so we can set this if we assume that Dirichlet BC to be present

anywhere, we have seen that AP1 that is set to 1.0.

And rest of the coefficient AW and AE at node 1, they are set to 0.0 and the source term that

becomes our specified temperature value. So that is what we saw in our pseudo-code. Now if we

have the type=1 that is we have got Neumann BC, then we need to change, AW we have already

set to 0, so we need to change AE and B. AP we have seen in this case remains as 1.0. So we do

not need to write a separate line in this block.

So we just change AE, so M.AE1=-1.0 and M.B1 that is given by -qb dx/k, so we have put in the

access specifier set bcs0.qb that will give us the specified heat flux at the left node, grid.dx that

gives grid spacing and grid.k that has told the thermal conductivity.

(Refer Slide Time: 17:14)

Next, when we come to convective boundary conditions, we need to change AE, AP and B, these

3. AQ, we have already set to 0.0, so we do not need to worry in this block. Let us define a local

variable hdxk which includes h*dx/k, so hdxk stands for BCS0.h. Remember this 0 index is

being used for boundary condition at the left node, into grid.dx/grid.k and AE, M.AE1 that is the

coefficient corresponding to the stern neighbour that becomes -1.0 coefficient corresponding to

the current node that is 1.0+hdxk.

And our boundary condition which now influence our source term that becomes

M.B1=hdxk*bcs0.Ta. So whatever pseudo-code which we have known, incorporated that in our

code boundary conditions for the left node. We need to do the similar exercise and we ought to

obtain the pseudo-code expression for boundary conditions at the right node.

(Refer Slide Time: 18:38)

So we are still with standard finite difference formulation. So BCs at right end node, so let us

draw sample grid, this is our grid point and its index would be an n+1 if the number of division is

N, this left node will have an index of N and so on. Boundary conditions would be specified

here. So let us have 3 cases. The first one is our BC Type=0, we simply say that TN+1 is

specified as given boundary temperature.

So this where the case, all that we need to do is set the corresponding entry. So let us use a

simpler term, let us call it, let us define that nx=n+1, so AP of nx set its value to be 1.0. AWnx

and AEnx value both provide the 0 value and our right-hand side vector is Bnx, we need to store

in it the specified temperature value.

Now the next one, flux type boundary condition, flux type BCs, so now in this case, we need to

come up with an approximation for the flux term itself which involved derivative. Now this q=-

kdT/dn, now in this case, our vector n is aligned with positive x direction. So dT/dn and dT/dx,

they would have the same meaning or they would-be identical. So this -KdT/dx and this now

dT/dx, we will have to approximate it using a one-sided difference.

So we will use backward difference approximation using the values at node n+1 and node n. So

this will be approximated by Tn+1-Tn/delta x. So now let us take 2 sub cases. The first one is

Neumann BC which corresponds to an integer flag BC Type=1, we have q=qb. So this simply

tells us that k*Tn+1-Tn/delta x, this is equal to -qb or we can write this as -Tn+T of N+1= -qb

delta x/k. So if you compare with what we had obtained, the expression for the left and is its

presence fairly similar, on the indices have changed.

(Refer Slide Time: 23:20)

So the pseudo-code now which we need to incorporate in our function, our AWnx, this should be

set with the value of -1.0. APnx, this should be set a value of 1.0 and Bnx, this should be

assigned a value -qb*delta x/k. Now the next case is convective boundary condition, it says

q=h*T-Ta, so this has K*T of N +1-TN/delta x=-h*TN+1-Ta. Remember in our, I think we had

just transposed the signs.

Alternatively, we can rearrange it as -TN-T of N+1=-h delta x/k*T of N+1-Ta. Rearrange it

further to put in standard form. So -TN +1+ h delta x/k*T of N+1=h delta x/k*Ta. So compare

this expression with our standard discrete equation for this node and then we can say that from

what we need to modify that is our AP of nx, remember this nx, we have introduced as a alter

notation for an index N+1. So remember that, nx stands for N+1. So APnx should be assigned a

value 1.0+h*dx/k.

(Refer Slide Time: 26:24)

AWnx should be assigned a value of -1.0 and AEnx, this will be set to 0.0 and our load vector

element of B at this point nx, this should be assigned a value h*dx*Ta/k. So now this completes

our pseudo-code, these 4 lines are the ones which we need to directly put in our code to take care

of the incorporation of the effect of convective boundary condition.

(Refer Slide Time: 27:13)

So let us get back to our code. So incorporation of BCs at right n. So type=bcs1, this argument of

1 stands for the boundary condition at right end. So get type of boundary condition and as we

said we are going to now introduce a local integer nx=gride.nnodes. So nx is actually, this stands

for the value Capital N+1 where n is a number of divisions.

Now let us put the Dirichlet BC, that is the simplest one and let us assume that for a default BC,

so in that case our M.APnx that is provided with a value 1, remaining coefficients was set to 0

and M.Bnx is set to bcs1.TB. Now change for other 2 types of boundary conditions, if type=1

that is our Neumann BC.

Now in this case for the Neumann BC, we have already seen a pseudo-code, that APnx that

should be set to 1 that we have already done. So we need to just change the values of AWnx, so

M.AWnx=-1.0 and next M.Bnx which includes the effect of qb, so -bcs subscript

1.qb*grid.dx/grid.k.

(Refer Slide Time: 28:57)

Now in case of, we have got convective boundary conditions. So we need to change that again

AW and AP and B. So let us define the short hand notation variable hdxk which stands for

h*dx/k our x is specifiers, so h would be bcs subscript 1.h*grid.dx/grid.k. So M.AW for the node

nx is -1.0. M.APnx that becomes 1.0+hdxk and M.Bnx=hdxk*bcs1.Ta. So now we have finished

our coding part for the incorporation of boundary conditions with standard grid that is our vertex

centred grid.

Similar exercise we can repeat for the cell-centred finite difference grid. I will not do the

complete derivation for the pseudo-code, that I would leave as an exercise but few salient points

I would just like to mention which you should remember for cell-centred grid.

(Refer Slide Time: 30:33)

For cell-centred finite difference formulation, please remember at 2 ends, at left end, at both the

ends, we are going to introduce what we call ghost points. Remember the computational nodes

are in the centre of the cell, this is our problem domain, this is our boundary, left boundary. The

boundary conditions are specified here. So we will introduce a ghost node of zero and

temperature at boundary, let us call it as T of b. Now Tb would be approximated as an average of

the temperature at point grid node 1 or ghost node 0.

So Tb would be given as T1+T0/2 and we can easily use central difference approximation for

derivative. So dT/dx at, let us call as x=xa, our left end, this would be approximated as T1-

T0/delta x. So you need to just take care of these 2 definitions in deriving the expressions and the

corresponding pseudo-code for incorporation of either Dirichlet boundary condition or Neumann

or convective boundary conditions.

Similarly, a right end, let us redraw our domain. So we are at, now x=xb, this is our

computational node for the index N, N+1 nth node becomes now our ghost node. Now what will

be the temperature values at the boundary T at x=xb, this has to be approximated as TN+TN+1/2.

Use CDS for derivative and all that it means is dT/dx at x=xb, this can be approximated as

TN+1-TN/grid spacing delta x.

(Refer Slide Time: 34:17)

So what we will do, our general procedure would be, general procedure for obtaining expression

or expressions for boundary nodes would be substitute for their value of T at ghost node. That is

T0 at left end and TN+1 at right end, obtained from specified BCs, specified boundary

conditions into standard discrete equation, APTi+AWTi-1+AETi+1=Bi, okay.

So at one end of Ti-1, left end, Ti-1 would become T0 eliminate or we have to get at the

expression for T0 from either Tb=T1+T0/2, Dirichlet boundary conditions were specified or

from the flux specifications, solve for T0, substitute that in this equation and get a modified

discrete equation for that node. So I would leave the completion of this task as an exercise. So

obtain final expressions for incorporation of BCs and put them and rather implement them in our

C++ code.

Remember this C++ code would be available to you, what we are looking right now in the

lecture on NPTEL site, so you can download it and do your modifications. I will just give you a

brief look at the skeleton of what I have done, that BCCentred and this is exactly in the same

way, this is a bit more elaborate compared to the standard format but the remaining code is

exactly similar to what we had looked in detail for standard boundary condition.

Now this completes our code, okay and you can compile it and run it and test it for a certain set

of problems. Now let us do a sample run and if you perform a sample run, our state will give you

some results for 2 sample test problems.

(Refer Slide Time: 38:21)

So the first test problem is the steady state heat conduction in slab of width 0.5 with temperature

dependent heat generation that is q is 1273-T watt per meter cube and the left end of the slab is

maintained at a T=373 Kelvin, right end of the slab is being heated by a heater for which the heat

flux is 1 kilowatt per metre square and thermal conductivity is constant, it can be taken as K=1.

So just input all these values in our code and this is what do we get for a standard grid by taking

5 grid divisions, okay.

(Refer Slide Time: 38:58)

The temperature values range from 497 to 928, exact solution for this problem can be easily

obtained that is again left as an exercise to you, it is all decoded there is a part of the code,

simple function is available which gives the exact solution and that our output routines also

computes the percentage error based on the exact solution. So for this choice of the grid,

percentage error ranges from 0.34-9.94.

Now you can observe one thing that error increases from node 1 to node 5 and the reason is close

to this node, in fact the nodes 2 3 4 5 6, node 0 which is close to, x=0.1, we had temperature

specified. So at this end, errors are less but at the right end where we had approximated our flux

by the first-order backward difference scheme, we get fairly large value error.

(Refer Slide Time: 40:09)

Now FDM results for the cell-centred grid, now the grid points are in the middle of the cell 0.05,

0.15, 0.25 and so on, okay. So you can easily say that errors are very small, they are much

smaller compared to the solutions which we have obtained with standard finite difference grid

and specifically prominent is this last figure, at close to the right boundary where the flux was

specified.

Now we get error less than 0.1% and the reason for the sake of accuracy is that at the right end,

flux has been approximated by a second order accurate central difference scheme.

(Refer Slide Time: 40:56)

Take another set of results which you can obtain, you can try run the code for this particular test

case, a slab of width 1 m with constant heat generation. This is a test case for convective

boundary condition. The left end of the slab is maintained at a T=373 degree and the right end is

losing heat by convection to ambient at 273 Kelvin. The heat generation is a constant, 500 Watt

per meter cube and the thermal conductivity can be taken as 1. The convective heat transfer

coefficient, let us say we have taken 30.

(Refer Slide Time: 41:30)

And this is the result obtained with our standard grid. So now this is where we are now going to

put our end to our discussions on finite difference but before we close, I would like to leave

certain exercises for you.

(Refer Slide Time: 41:50)

These exercises pertain to writing an actual implementation. So let me call them as coding

exercises. Number first, extend 1-D code to a 2-D code. So design philosophy you can follow the

same the way we have discussed but now the things will change, the data structures would

change, the solvers would change and you can use or you can implement an iterative solver for

solution of 2-D steady state heat conduction.

A simple exercise could be to modify this code to solve 1-D steady state advection diffusion

problems. Now some of the solvers, we will discuss in the next module which you can make use

of.

(Refer Slide Time: 43:41)

Now this broad references for what we have, you can get lot more material, many more finite

difference algorithms and the approximation schemes in these 2 books, particularly Chung's

book Computational Fluid Dynamics, it is a compendium of a huge collection of difference

approximations together with finite volume and finite element methods for CFD applications and

more readable accounts, much shorter account you can find in Ferziger's and Peric's book.

You can also try it another book on CFD, Introduction to Computational Fluid Dynamics by John

D. Anderson which is a lot simpler to read than either of these 2 books. So for now this way we

would put a full stop to our discussions on finite difference method and in next module, we will

focus on the solution of discrete algebraic systems.

