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Welcome once more to our lectures based on application of finite difference method to scalar

transport problems. This is our module outline and we had been working on the last topic that is

applications of finite difference method to scalar transport problems. In the previous lecture, we

discussed application of our difference to one dimensional heat conduction which was based on

what we call node or a vertex centered finite difference formulae.

We introduced a cell centered grid for finite differences discretization and we looked at how do

we modify the boundary conditions? The boundary conditions have to be taken care of by what

we is called ghost cell,  we have to incorporate ghost cells from ghost nodes, to incorporate

boundary  conditions,  we  did  one  part  that  is  the  incorporation  of  the  Dirichlet  boundary

conditions and in this lecture this where we are going to continue form.
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So, this is our second lecture in applications of domain, over all  lecture 8 and 5 difference

application of FDM to scalar  transport  problems,  part  2,  so we will  continue with our cell

centered grid for finite difference discretization from where we left in the previous lecture and

then you would have a look at application of finite difference method to 2 dimensional heat

conduction, then transient heat conduction and advection diffusion problem. 
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If time permits, we will take up the computer implementation aspect in this lecture, so now let

us get back to what we were doing in last class, we wanted to solve it using finite difference this

one dimensional heat conduction problem with heat generation, so the governing equation for k

del 2T over del x square+qg = 0. At the left edge of the slab, that is at x=0, we had temperature

specified and we saw in footway, we can incorporate this temperature specified our Dirichlet

boundary condition.
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At the right edge of the slab, that is x= L, we have got a convective boundary condition that is –

k dT/dx at x= L= H * T – Ta, so now we need to find out how do we take care of this derivative

boundary condition and in what way that is change our discrete equations. So, once again we

would continue with the cell centered uniform grid and of course now in this case all our grid

points are the nodes they are internal.

So, we would as usual use 3 points CDS scheme for finite difference approximation and we

have to modify only this nodes or the equation for the nodes which are close to the boundaries,

we  have  already  seen  one  part  and  we  would  again  try  to  use  central  difference  for

incorporation of the boundary conditions which involves derivative at the right boundary. So,

let us see, how do we incorporate the derivative boundary condition?
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Cell  centered  finite  difference  scheme,  let  us  draw our  grid,  our  nodes  are  located  at  this

centroids of each of these cells node 1, 2, 3 and so on, N-1 and N, this is our right boundary

where we have a conductive boundary condition specified and we had at left boundary T = T

bar, here we have -k del T/ del x = H * T – Ta, so they mentioned earlier as for; since all these

grid points happen to be internal.

So, at each grid point we would replace of governing equation by a discreet counterpart using

central difference approximation, so for any internal grid point in fact; please note that now all

of our grid points are internal  to the problem domain it  is i  = 1,  2, N using CDS discrete

equation takes the form AW Ti -1+AP Ti or TP, for the time being, we are going to prefer using

that I index AE T of i+1 and this we said we are going to write QP i.

This  is  the  same as  what  we had  done  earlier  with  the  vortex  best  scheme  absolutely  no

difference, our A, the way rearrange the terms our AP was equal to 2, AE =AW = -1. Now, the

values of these coefficients were change for values of AP, AE and AW or change for nodes 1

and N, which are close to boundaries or which are adjacent to boundaries, so we have already

seen one change.
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That  is  we have  seen  the  effect  of  the  Dirichlet  boundary  condition  at  node 1,  there  was

Dirichlet boundary condition specified at the left hand and how does it affect these coefficients

for  node  1  that  we  saw earlier,  so  now we  will  take  case  2,  that  is  the  incorporation  of

convective BC at x = L, so once again we would introduce our ghost node, so this is our actual

boundary, let us put the internal parts as said it, okay.

This is our internals shell whose middle point is our computational node with the index N, now

let us introduce a ghost cell which is outside of it and the centroid of the ghost cell let us put

this by dotted line is call or give it an index N+1. Now, with this arrangement a boundary point

that happens to be the midpoint between these nodes; actual node N and the external ghost

node, so this is our so called ghost node.

So, boundary point is midway, this is a boundary x= L is midway between nodes N and N+1, so

that tells us that we can now use of us second order accurate central difference scheme, so let us

use second order accurate CDS for discretization of derivative dT / dx, so what do we get?

dT/dx at  x= L,  this  we can approximate  as  T of  N+1-TN divided by delta  X because  the

distance between nodes and N+1 would be the same as our normal greater spacing delta x.

Now, let us have a look at our boundary condition, so BC was –k dT/ dx at x = L, this was equal

to h times T-Ta, so on the right hand side we have got it on the term, that is our T setting here,

so this T is at x= L, so we need to approximate this TL as well. So, let us use simple average, so

use simple average to approximate TL that is our TL becomes half of T of N+1+TN.



So, now next we substitute or we use these equations 2, 3 and 4, so from equations 2, 3 and 4

what we will get? On the left hand side, we have -k and approximation for dT/dx would be

given by T of N+1-TN divided by delta x, on the right hand side we have got h times 1/2 T of

N+1+TN-Ta. Let us try to simplify this expression, our main purpose is to eliminate, so what

we are looking for? Our objective is; our objective is to obtain an expression for TN+1.
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This TN +1 is just intermediate variable which we have introduced for our formulation; it has

got no other purpose to serve okay. So, we can write our left hand side as T of N+1 – TN,

remaining terms let us transfer to the right hand side, so we get -h delta x divided by k and

inside we have got by 1/2TN+1+TN- Ta. Let us transfer the remaining term in TN +1 to the

right sorry left hand side and bring TN to the right hand side.

So, we get T of N+1 within brackets 1+ h delta x/ 2k, we have just transferred the first term

here 1/2 TN +1 multiplied by -x delta x/k to the left hand side, this is equal to TN times within

brackets 1- h delta x divided by 2k+h delta x divided by k times Ta, so now this gives us an

expression for this intermediate on TN+1 which we have introduced as 1- h delta x divided by

2k, the numerator divided by 1+ h delta x/k multiplied by TN+ h delta x/k divided by 1+h delta

x divided by 2k, whole thing multiplied by Ta.

So,  now this  expression  for  TN+1,  it  essentially  contains  our  boundary  condition,  so  this

contains the effect of convective boundary condition. So, now let us go to the discrete equation

for; consider the discrete equation or other discretized equation obtained using CDS for node N,



so this AW T of N -1+AP times T of N+AE times T of N+1 = Q PN, so all that we need to do is

now we need to eliminate TN+1 from here using equation 5.
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So, eliminate TN+1 using equation 5 and this will give us AW times T of N-1+, let me write or

introduce a new term AP prime TN = QPN Prime, so this becomes our modified equation for

node N; node N, where our AP prime would be our original AP+ AE times 1- h delta x divided

by 2k divided by 1+ h delta x/k; sorry this should be 2ks everywhere and similarly our QP and

Prime  is  the  original  value  of  QPN+ the  additional  term which  comes  from the  effect  of

convective boundary condition.

So, it would be-AE times okay, now you transferring the contribution to the right hand side h

delta x/k divided by 1+ h delta x divided by 2k times Ta, so what we can say is with cell

centered finite differences, the light became bit difficult the implementation boundary condition

that required some effort but there is a foot, translate into any gain in computational efficiency

or numerical accuracy, so this is what the questions we need to ask ourselves.

The question is implementation of BCs; of BCs is more complex than usual node based FDM,

so  what  are  advantages  if  any?  We  have  spent  some  good  amount  of  effort  on  the

implementation of these boundary conditions, so it will complicate our coding effort as well, we

will require few more computations so what is the gain? One thing which you can guess, we

have used, so note here, we have used second order approximations for all derivatives okay. 
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We use  central  difference  scheme for  the  discretization  of  d2  T/  del  x  square  term in  our

governing equation and we also used a central difference approximation for evaluation of dT/

dx term in the boundary condition,  so what we said? Is; first thing is perceived advantages

hopefully, we should get more accurate numerical solution either any other benefit, for that let

us have closer look at the complete system when we assemble.

So, let us write our just system matrix,  so system matrix with cell centered scheme, if you

remember the case one, what we had they were change only in a diagonal term that is AP, AW

dropped out, so the first row we are left with 2 terms that is AP one, let us call it, use a symbol

prime or rather to make it clear let us call it APM that is modified coefficient M at node 1 and

then usual value of AE, now this AE would be the same for remaining terms.

In the next row, we get AW, then usual value of AP and AE, so this is our system matrix A and

so on, we can keep writing it, we get only these 3 diagonal terms, the rest of the terms would be

zero. Now let us come to the last row which corresponds to node N, so what we found from the

previous equation which we had derived, they were changed only in AP, A will not adjust, this

is a last diagonal, so we will get AP and double prime.

So, this is a modified term AW remains same and note that the way we have written our AE and

AW they are both equal and their value was -1, so what you can see from this matrix, now this

matrix is; see matrix A obtained from cell centered finite difference discretization is symmetric,

so this is stark contrast with our previous formulation, where our nodes were aligned with the

boundary.



(Refer Slide Time: 28:42)

The first node was in the left boundary, the last node that is N+1 and that node was on the right

boundary, there we saw that system matrix is not symmetric but here we have got a symmetric

system matrix which has got scores of advantages in numerical solution okay. So we have got

tremendous  advantages  in  numerical  solution because we have got  specialized  schemes for

symmetric systems, using specialized schemes for symmetric systems.

For instance, if you want to use an iterative scheme you have got a very beautiful reiterating

scheme which is applicable that is our conjugate gradient method which is a very very simple

and it very powerful iterative scheme, a very efficient and simple to program iterative scheme

and  of  course  this  advantage  or  like  this  observation  is  pertinent  for  the  case  of

multidimensional problems, for one D problem where we have got only a tri diagonal structure. 

We are happy with TDMA; TDMA matrix is symmetric or not symmetric, so this advantage is

basically it is of main interest for multidimensional problems though we derived or we showed

this matrix to be symmetric only starting with a one D problem but exactly same structure we

would obtain if we had a 2D or 3D problem, if you want you can verify it yourself and the

procedure for implementation of boundary conditions would remain exactly the same which we

have discussed for all our simple one D case.
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I  would like to  leave certain things as an exercise for you, I  just  mentioned this  matrix  is

symmetric. Can you check with a linear algebra book, what are other mathematical properties

of matrix A which will help in choice of numerical schemes for solution of our A phi = Q this

system which we had, we want to solve it numerically, so are there any other properties which

of; which would be very helpful.

In  particular,  find  out,  if  A is  positive  definite  okay,  I  will  just  close  this  cell  centered

approximations with a remark that this scheme we use exclusively in the solution of Navier

stokes equations, so we will have what we call a pressure Poisson equation, pressure elliptic

equation and for the solution of pressure Poisson equation, we will choose pressure nodes to be

at the centres of our cells.
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And the resulting system matrix would be definitely symmetric and that will help us in the

solution for pressure Poisson equation.  Now, let  us have a  look at  a two dimensional  heat

conduction problem and see what sort of discretization we can do for this. So let us consider for

the sake of simplicity a steady state heat conduction in a two dimensional domain without heat

source or sink.

If the heat source or sink is present that can be taken care of very easily, the way we have seen

with one dimensional problem, so this particular problem where there are no sources or sinks is

governed by our Laplace equation that is delta 2T/ del x square+del 2T divided by del Y square

= 0, so you have got second order derivatives and we have already learned multidimensional

formulae for second order derivatives.
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So, what do we do? For finite difference discretization, we will consider a uniform grid of the

size delta x in x direction and delta y in y direction and let us adopt a 5 point CDS molecule for

finite difference approximation at the internal grid point, so if you do that what happens? Now

let us draw our computational molecule to clarify the things a bit now. 
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Two dimensional heat conduction and what we are doing the way, we are proceeding now that

can be easily extended to 3 dimensional problems, so 5 point CDS molecule we are just dealing

with the stencil, so these nodes could be at the cell centre, so that these could be at the edges,

we do not need really need to worry about it, so our node P ij system neighbour Ei+1, j western

neighbour Wi-1,j its northern neighbour in y direction, it will be ij+1.

And then this is for southern neighbour would be given as ij-1, so at point P, that is at point

given by the indices i and j, our del 2 T/ del x square, remember what we said if you want to

write I want to find out the approximate shown formulae for multidimensional derivative, look

at the variable with respect to which we want to differentiate. So, it here it is x; x means only I

indices will change in our formulae in which we had derived for one dimensional problems. 

Suppose, here we were using CDS, so we will use central difference scheme; P is our central

node valued at W and E and P those are the ones which would be involved in approximation of

the derivative del 2T over del x square. It is simply given as T i+1j that is the value at eastern

neighbour+Ti-1, j value at the western neighbour -2 Tij divided by delta x square. So, this is the

approximation for the first second order derivative in our governing equation.

Similarly, the second derivative which we had del 2T/ del y square at the grid point I, j but

again use your CDS approximation, so now the values at grid point P N and S, those will be

involved because now we have to differentiate with respect to y, so i indices will be kept same

in our numerator terms only j indices will change, so T i, j+1+Ti, j-1-2T ij divided by delta y

square, then what would be the discrete equation at the node P?
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So,  discretized  equation,  substitute  the  approximation  of  these  derivatives  in  governing

equations, so we get discretized equation at internal node P and this would be given by Ti+1,

j+Ti-1, j – 2Tij, multiplied by delta x square to simplify the things of it, so we get a ratio of

delta x square/ delta y square * T of ij +1+ T of ij-1-2T ij = 0, we can introduce a shorthand

notation, so let us the symbol alpha or rather let us use beta.

Beta = delta x divided by delta y, so we can write the preceding quiz in bit more compact form

as T of i-1, j+T ij within brackets 2+2 beta square-T of i-1, j-beta square times T of ij+1- beta

square T of ij-1=0, so this can be easily recast in our generic form that is AW TW+ AP TP+AE

TE+AN TN+AS TS = QP, we can easily compare the coefficients and write these values here

that AW= AE = -1, our AP= 2 times 1+ beta square and AN = AS=-beta square.
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Handling the boundary conditions is exactly the same as we had done previously in the case of

one dimensional problems, so nodes at boundaries handled exactly in the same way; the same

way as  we did  for  one  D problem to  incorporate  boundary  conditions  and once  you have

incorporated the boundary conditions,  we can easily obtain discrete system of equations by

assembling the things at all the nodes.
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And you can observe for yourself that we will get a penta diagonal system okay, this is what we

had our generic discrete form for two dimensional heat conduction problem, so implementation

a BC that will depend on our choice of grid that is to say whether we have taken vertex centre

computational node or a cell centered computational node. So, if you have got usual node base

that is vertex best schemes.



We have  to  use  one  sided  difference  formula  BDS  or  FDS  as  appropriate  for  derivative

boundary  conditions  at  any boundary. Dirichlet  slip  boundary  conditions  are  taken  care  of

without any problem, for cell centered scheme, we will proceed exactly the way we did in one

D, that  is  we will  introduce  the concept  of  ghost  cell  and we will  use simple average  for

Dirichlet basis as how we will incorporate and eliminate the values corresponding to the ghost

cell.

And thereby include the specified boundary condition in the discrete equation for the node close

to Dirichlet BC. Similarly, we can use central difference scheme which involves value of the

variable at the ghost cell, use your boundary condition to obtain that expression for that variable

at ghost cell,  substitute that in this discrete equation for the node adjacent to this derivative

boundary and we are done with introduction of boundary conditions.
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Next suppose, we had the instead of steady or problem where transient one, so say for example

a transient heat conduction problem in a two dimensional domain with constant diffusivity in

the the case of variable  diffusivity can be taken care of algebra it  would become bit  more

involved but as far as finite difference approximation is concern and these steps would be fairly

similar.
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So, now let us take the case of constant diffusivity, so del capital T/ del T, very small Ts of time

variable  is  equal  to alpha times del  2T/  del  x  square+del  2T/  del  y  square,  if  we had a  3

dimensional problem, we will have one more term del 2T/ del z square and here where alpha

denotes thermal diffusivity, so for finite difference discretization let us consider a uniform grid

of grid size delta x and delta y, 5 point CDS scheme for finite difference approximation at

internal grid points.

So, this is what we have already seen earlier for 2D case; 2D, 3D case we derived this as a

central  difference approximation.  What happens in the left  hand side? Now, del as a partial

derivative of capital T with respect to time now that becomes an ordinary derivative, so that is

why I have used symbol d; dT/ d small t i, j at grid point ij = alpha times this bracket terms

Ti+1j+Ti -1j -2 T ij divided by delta x square+Ti, j+1+ T I, j -1 -2 T ij is divided by delta y

square.
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So, in generic discrete form, we introduce our symbols AP AN and so on and you can write by

introducing a new symbol CP for the time being of course was the way we have written it CP

=1, so CP dT/ D capital T/ dT at point P with+AP TP+AE TE+AW TW+AN TN+AS TS= QP,

this QP might be present in case if we had some stroke terms coming from somewhere.

Now, if you collect such discrete equation at all nodes, so in this case we will get an ordinary

differential equation in time, so all these Cs coefficients they will be combined in this matrix C,

so this capital C matrix is basically a diagonal matrix, so capital C times d capital T/ dT+capital

K * T = B; now these bold symbols, bold capital T indicates or it is a vector of the temperature

values at all the grid points.

And capital B denotes what we call the load vector, so in finite difference finite volume of finite

element terminology specifically in the case of finite elements this matrix C is also referred to

what we call a capacitance matrix, matrix k is called a stiffness matrix and B is called the load

vector, so same term is also borrowed and used very often in finite difference and finite volume

literature for transient heat conduction problems.

So,  this  is  a  simple  system  of  ordinary  differential  equations  one;  it  contains  only  first

derivative and this has to be solved using a time integration scheme which we will learn in a

later  module,  so  until  then  let  us  wait  and  learn  few more  techniques  of  finite  difference

discretization for convective transport problem which we will do in the next lecture and we will

discuss some computer implementation aspect also in the next lecture.



And then we will take one by one; the first we will consider in the next module the solution of

algebraic equations and then in the module after that we will take; take up the case of solution

of these ODE or ordinary differential equations in time 


