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Welcome back to  module  3,  we are now in the  concluding like  on finite  difference  method

wherein we would consider application of FDM to few scalar transport problems and we will

also discuss few computational aspects, that is to say, you take up the case that if you want to

implement  finite  difference  method  using  a  computer  programming  language  which  of  the

aspects, which we are to consider. 

So, these were 2 things which we are going to do in this lecture and possibly in the next lecture

as well.

(Refer Slide Time: 01:33)

So, our model outline, we already covered the shaded parts. Today, we are going to focus on

applications  of FDM to scalar  transport  problems. Before you proceed further, let  us have a

recapitulation of what we did in the previous lecture. We discussed implementation of boundary

conditions specifically the ones which involved derivative boundary conditions wherein, we need

to come up with suitable finite difference approximations of the derivatives.



And then we discussed features of finite difference in algebraic system which we obtain from the

discretisation of work continuum problem, so we discussed in detail at nodal discrete algebraic

equations and what we mean by computational  molecule or a stencil  in the context of finite

difference discretisation and we briefly looked at indexing and storage aspects as well. In today’s

lecture,  we are going to focus on applications  of finite  difference method to scalar transport

problems.
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We would initially focus on simple one D heat conduction problems and later if time permits will

take up 2 dimensional heat conduction and advection diffusion problems, so outline of lecture we

would try and apply finite difference method to one dimensional heat conduction. Now, today I

would introduce heat and their concept that is related to the choice of our grid, which we called

cell centered grid. 

And the cell centered grid is specifically of great importance in the context of Navier-Stokes

equations were in cell centered grids are primarily used, the nodes of the cell centered; they are

used  for  the  discretisation  of  all  scalar  quantities  and the  nodes  on  the  surfaces  of  control

volumes, they are used for velocity components. So, keeping that in view, now let us have a look

at a cell centered discretisation apply to where, one dimension heat conduction you would see if

it hoppers any advantages.



Then, we will briefly discuss that so for whatever algorithm which we have developed for one

dimensional heat conduction. If you want to implement, we want to write a computer program,

so what are things we need to consider and then if time permits, we will move on to application

of finite  difference method to 2 dimension heat  conduction and possibly advection  diffusion

problem.
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If not, we will cover these 2 topics in our lecture. Now, let us come to a first application; one

dimensional heat conduction, so let us consider steady state heat conduction in a slab width L

with thermal conductivity k and uniform volumetric heat generation. So, for this problem we

already derived our governing sequence earlier in module 2, just rewrite or let us rewrite our

governing equations.

Governing equations and boundary conditions in the case based on the Fourier’s law are, k del 2

T/del x square + qg =0, wherein this case, thermal conductivity which has been assumed to be

constant and T is the temperature and q and g are volumetric heat generation. Now, like the left

and that is x =0. We have got temperature specified see, T at 0 = T bar, where T bar is specified

temperature.



Next, let us suppose the right end, the wall or slab that is exposed to the moment and there is a

heat loss due to conviction, so in that case our convective boundary condition becomes –kdT/dx

at x = L, this edge of a heat flux, this would be equal to h times T–Ta, where T is the temperature

at the wall and T is ambient temperature, h is our convective heat transfer coefficient. So, now let

us derive the finite difference approximations for this problem.
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So, for derivations, let us move on to a board, so we dealing with one dimensional steady state

heat conduction, for the sake of reference, let us rewrite our equations on the space as well, so

we had our governing equation given by k del 2 T over del x square + qg = 0 zero, list number

this as equation 1, then we get 2 boundary conditions T at zero that was given by T bar, just call

this equation 2.

And the third boundary condition was given as –k del T/ del x at x = L h*T–Tn, let us call it as

third boundary condition, so physical problems something like this, at sloped slab, the left ends

we fix our coordinate origin. This is our x direction, so we have got temperature specified here; T

= T bar and we have got convection to a medium which is winding kind of temperature Ta and

convective heat transfer coefficient is given by h.

Now, a finite difference applications list; discretised dimension that is the first aspect, so first

task  is  or  step  one;  discretise  the  domain  since  it  is  one  dimensional  problem,  we need  to



consider only discretisation along the line, so domain would now be given by 0 to L and let us

choose for the sake of simplicity of our discussions today. Let choose a uniform grid delta x

which is given by; if we use N deviations of our computational domain, the total length is L.

So, delta x would become L/N, where N is number of divisions or we can also call it number of

cells, so, let us; now let us draw our one dimensional grid with the proper grid indices, so the

leftmost node, we will; that is x = 0, we would number it by 1, 2, 3 and so on, then the generic

node i and around that we will have nodes i -1, i +1 and so on and towards the end we have the

last node.

Since we have got N divisions, the last node would be numbered as N+1, our next step would be

finite difference discretisation that is obtain discrete form FDM discretisation, it will consist of

obtaining discrete form for our governing equation and boundary conditions, so now first let us

obtain discrete form for a governing equation; form of equation one at an interior node, while

interior node meaning any node other than node 1 and N +1.
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Both of which are in the boundary of the domain, node i and let us use 3 point central differences

scheme for discretisation of work derivative, discretisation of second order derivative that is to

say this or del 2 T over del x square at the interior node I, we are going to approximate it in terms



of the nodal values at the grid point i-1 and i +1, so central difference formula which we learned

earlier this is simply, T of i+1 + T of i-1 -2Ti / delta x square on our uniform grid.

So, this is the approximation of the derivative which is involved in our governing equation one,

let  us  call  this  equation  as  4,  so if  you substitute  4 into  in  our  equation  1,  so then  we get

discretised form; discretised form of equation one is k times T of i +1+ T of i -1-2 Ti / delta x

square + our qg term evaluated at node, I this would be equal to 0, let us rearrange this equation,

so we can multiply it by delta x square/ k.

Keep this unknown temperature terms on left hand side and the known source term lets sifted on

the right hand side, so if you do that, we will get T of i -1+2 Ti-T of i +1 = qg of i delta x square/

k. So, this equation holds good for all nodes; for all nodes i= 2, 3 up to N, so this is the discrete

form of our governing equation which has been obtained using central differences scheme. Now,

let us compare it with generic equation which we wrote earlier.

(Refer Slide Time: 15:20)

Generic discrete equation, so compare with generic discrete equation which we have written as

AW, TW + AP TP + AE TE = QP, now let us recollect the correspondence between this compass

notation and our indices, so this P stands for our node I, E stands for the index i +1 and W stands

for index i -1. So, if we compare equations 5 and 6, we can easily see that our AP = 2 AE and

AW the both = -1 and QP = qg delta x square/ k, qg evaluated at grid point i.
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So, now you have been able to discretised one part that is our differential equation. The next part

is we have to look at the boundary conditions, so now let us discretised the boundary conditions,

for discrete form for boundary conditions at node 1, what we have? T, so node one that is; which

corresponds to T=0, temperature is specified as T bar, so the equation becomes very simple here.

Hence discrete equation for node 1 is; T1 = T bar, just call this equation as 6.

So, if you compare it with the generic equation what we have for this? Thus our AP for node 1 is

equal to 1 AW of and AE for node 1, they are both 0 and QP for node 1 that is T bar. Next let us

move on to the rightmost boundary which corresponds to our node N+1, that node N +1, we need

an approximation for an derivative dT/dx and the simplest approximations which you are going

to choose is; our 2 point backward difference scheme which will involve values at N +1 and

node N.
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And now let us approximate this dT/dx using BDS, so we can write this is as TN +1-TN / delta x,

substitute this approximations to derive in our convective boundary condition, thus discretised

BC at node N +1 becomes -k times TN +1-TN / delta x = h times, on the right hand side T, that T

corresponds to TN +1 – Ta. Now, let us rearrange these terms a little bit, so we can write this as T

N +1-TN = -h delta x/k, we transfer this delta x and k to the right hand side.

We also transfer the negative sign, so we get -h delta x/ k which multiplies TN +1 – Ta, transfer

the unknown variables TN +1 to the left hand side, sorry let us rewrite this equation as – TN and

collect all the coefficients of TN+1 together, so we get 1 + h delta x/ k TN +1 = h delta x/ k times

Ta, so let us call this equation as 8, so if we compare with generic discrete equation or generic

discrete equation, so we get AW = -1 AE = 0.

AP, let us put this N+1 as superscript, so AP N +1 this is equal to 1+ h delta x/k and our qp N +1

that is h delta x/ k times Ta. So, now you got all the equations at all nodes in discrete form, so our

final algebraic equation can be written as; finite difference algebraic system becomes; now let us

write it out in the matrix form, for node 1 what we had? The coefficient of the matrix; let us put

the unknown terms; T1, T2 and so on.
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This Ti, Ti +1 and T of N +1, on the right hand side you get, at the first equation that T1 = T bar,

so Q P1 that was equal to T bar, for the second equation onwards we had this term, let me put it

as QPI, the expression for QPI, we have already derived earlier, the previous space, so it will

continues as QPI for all the terms from 2 to N and for TN+1 we had the last term, let us we write

h delta x/ k times Ta. So, this completes our right hand side.

Now, let  us  come  to  the  left  hand  side,  in  the  first  row  the  only  nonzero  coefficient  that

corresponds to the one which multiplies T1, so this main diagonal, we have got one, rest are all

zeros.  For  i=2,  we  have  got  AW that  was  equal  to  -1,  the  main  diagonal  that  is  AP with

corresponds to AP this becomes 2, AE was -1, remaining terms simply zeros. The same holds

good for 3rd term; -1, 2, -1, 0, 0, 0, 0 and so on, so we can continue in this way. So, what we will

find is that we have got nonzero terms only on the main diagonals.
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And remaining are all zeros -1, 2, -1, now let us write the last equation 0, -1 and simply write this

as AP N+1 because this is a bit more involved, we have written that earlier. So, if you look at this

equation, look at the system matrix. System matrix is sparse that is one characteristic, the other

part is; what are the characteristics the system which we have got? So, we have got this one D

heat conduction, this is the problem which we have been discussing.

So, the finite difference algebraic system; 2 characteristic we can note; the first one is, it this

sparse and this sparsely pattern is very clear, what is that sparsely pattern? It is a tri diagonal

system, so the next  module when we discussed solution of algebraic  recently we will  come

across or we will discuss one very important and very elegant algorithm which is called TDMA

algorithm that is we can solve this system, so it can be solved very efficiently using the TDMA.

This TDMA is an acronym for tri diagonal matrix algorithm and some people also call  it  as

Thomas algorithm and their observation which we can make is; it is not symmetric; so matrix A

is not symmetric though here the symmetry is really not of much importance since, the simple

one dimension heat conduction for tri diagonal structure and this TDMA algorithm does not care

whether the matrix is symmetric or not.
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So, this is just an observation that in this case, we have got a metrics, which is not symmetric by

using our normal finite difference grid. So, next time we are going to introduce you a small

variant of what we have just discussed and that variant is very important for few problems. So,

we will  introduce  what  we call  cell  centered;  cell  centered  finite  difference  grid,  so  let  me

introduce it using our one D problem.

So, one dimension, what we have? It was simple one dimensional domain and for discretisation,

we divided into; let us say N equal segments, the segments could be unequalled in really matter.

Now, previously what  we had done;  these were the node that  is  the points which mark our

divisions, those were the ones which we have taken as our grid points. Now, let us make it a

slight departure, instead of treating these, dividing points such our computational nodes.

Now, let us take the points which are in the centre of these so called divisions, each of these

divisions we can also call them; let us call them as a cell and our computational node, which are

now put with the field circle, these are our computational grid points okay, so what would be the

difference compared to the previous arrangement, we will have exactly as many nodes, as many

their  divisions  we  have  made  somewhat  compared  to  previous  discretisation;  compared  to

previous discretisation is number of computational nodes is one or less, this is now equal to one.



Earlier, we had 1 to N +1 node. Now, as far as discretisation of 4 interior nodes is concerned that

would remain unchanged, so discretisation of governing equation and at interior node, this is call

as interior node I, that would be once again the same and remains similar to what we had derived

earlier, but now there would be an important difference, how do we incorporate the boundary

conditions? 

Now, we have them in the position of the known temperature boundary condition would require

some in general, we have to make certain modifications. So, let us come to the boundary nodes

that is; that is our incorporation of boundary conditions, so we will take 2 cases; one of our

temperature specified, so case A, which we call Dirichlet BC at this temperature specified, how

to tackle this case?
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Now, suppose now we are dealing with the temperature specified at node 1 as we have been

discussed  in  our  specified  problem,  so  now  let  us  draw  the  cell;  the  first  cell,  so  our

computational node is setting here at the centre, the temperature is specified this boundary node,

this were we have got, T = T bar, okay. What do we do now? We introduce a concept of ghost

node or ghost cell.

Ghost cell  is something which is present,  exist  in a physical domain,  it  is just  an imaginary

extensions, so let us extend this to the left hand side and this dotted portion, this becomes our so



called ghost cell. So, we have now an imaginary computational node which we are going to use

only for the sake of formulation, it will not come in our problem solution and list number it as 0,

okay.

So, you go to an imaginary node or other recorded at the ghost node 0, now this would appear in

our central difference approximation at node 1, so if we look at the approximation of our term

d2/dx square at node 1, this would be given by T2 + T0 –T1/ sorry twice of T1/ delta x square,

okay now this T0 is really not a part  of a solution,  we have just introduced it to handle the

boundary condition, okay.
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So,  in  this  case  while  using  cell  centered  thing,  we would  use  our  usual  central  difference

approximation  for  all  grid  nodes  1  to  N,  okay  and  we  will  annual  modify  the  creases

corresponding to that nodes on the two sides by which will incorporate boundary conditions at

node 1 and node N. So, now in this equation for the node 1, we need value of T0, now let us a

very simple averaging concept; using simple averaging.

T at 0 zero, this can be expressed as an average of the temperature at T0 and T1, okay and our T0

was specified boundary condition okay, so now you say that we can write this T0 as twice of T

bar – T1, so in the discrete equation for node 1, we need to substitute this value for T0 and that

will lead to 2 modifications, this T0 is linked for to discretised equation for node 1; so discrete



equation for node 1, this one was our AW T0 + AP T1 + AE T2 = Q at point 1. So, what changes

we need to make, if you substitute for T0 that AW thinks will vanish.

And the contribution we will have here 2T bar-T1 * AW + AP T1+ AE T 2 = Q1 or rearrange it,

so we can write it as AP-AW times T1 + AE times T2 = Q1 -2T bar AW, so now this becomes our

modified discrete equation for node 1, for node 1. Now, we need to adopt a similar concept for

introduction of the boundary condition at the last node, okay and then we have got a derivative in

our boundary conditions.

So, what we would use instead of using a backward difference approximation which is only first

order  accurate,  which  we  had  used  previously.  Now,  we  would  use  a  central  difference

approximation for the derivative at the boundary node once when we introduces the concept of a

ghost cell or ghost node in terms of the valued ghost node, we will write down our derivative,

obtain the derivative.

And then substitute the value of the temperature value at the ghost node in terms of what we

obtain for boundary conditions into the discrete equation for node in which we had obtain by

using central difference approximation for the interior node N, so we will again get a modified

equation okay and that modified equation cannot be coupled with the rest of the equations. Now,

these things we are going to discuss in the next lecture.

And then we would compare the solutions or other system matrix which we get in both the cases,

the one which we get from cell centered, approximate finite difference approximation or vertex

centered  which  we  normally  use  in  finite  difference  and  we  will  notice,  there  is  one  very

important difference. But for the time being less keep your excitement contained for the next

lecture.

So, the next lecture apart from it, we would also try and give one numerical example, we will

solve a numerical problem and say which of these approximation; approaches or vertex based

approach which your normal finite  difference approach or this  cell  centered finite difference

discretisation, which one is more accurate. We will take one problem for which we know what



the analytical solution is, so we can compare the two rather easily and then we will move on to

few more applications and we will discuss the computer implementation aspects also in the next

lecture.


