
Computational Fluid Dynamics
Dr. Krishna M. Singh

Department of Mechanical and Industrial Engineering
Indian Institute of Technology – Roorkee

Lecture – 15
Implementation of Boundary Conditions and Finite Difference Algebraic System

(Refer Slide Time: 00:47)

Welcome back to the sixth lecture in module 3 on finite difference method. In this lecture, we

would focus on implementation of boundary conditions and finite difference algebraic system,

so just have a recap of what we did in the previous lecture. We discussed approximation of

second order derivative in a scalar transport equation; we discussed multidimensional formulae

and approximation of mixed derivatives.

(Refer Slide Time: 01:27)

In this lecture, we will focus on how do we implement boundary conditions? particularly the

derivative boundary conditions and we will have a look at the system of algebraic equation

which we obtain from finite difference discretization. This is the outline of this lecture. We will

first have a look at implementation of boundary conditions; we will derive required higher

order formulae for derivative boundary conditions.

And then we will have a look at differential algebraic system or rather find a difference system

which we get, we will look at nodal discrete algebraic equations and we will discuss in detail

that what we call computational molecule or computational stencil in a finite differences on a

structure grid, then we will briefly discuss indexing in storage aspects for discrete algebraic

system which we get from finite a difference discretization.

(Refer Slide Time: 02:22)

So, now let us take first topic implementation of boundary conditions. Now, we have our partial

differential equation and its numerical space using finite difference requires 2 things; first is

finite difference approximation of partial differential equation at every interior grid point, so

what we will do? We will replace all the derivatives which appear in our partial differential

equation with their corresponding finite difference approximations.

And this would convert our partial differential equation into an algebraic equation at a given

interior grid point but this is not sufficient enough we have to impose the boundary conditions

which represent the constraints required to obtain a unique solution of a given continuum

problem. Now, we can have 2 types of boundary conditions. The first one would call as

Dirichlet boundary conditions. Now, Dirichlet BCs, they are basically specified values of the

unknown variable.

Now, these can be incorporated directly, we do not have to do any discretization or any

difference approximation at those boundary nodes but there are boundary nodes where we will

have boundary conditions which involve gradient of a variable, it could be in terms of what we

call a Neumann boundary condition where the derivative first order derivative or what we call

flux is specified, we could have a mixture of flux plus for derivative plus some multiple of the

variable itself what we call robin boundary condition.

(Refer Slide Time: 04:01)

So, for such boundary conditions which involved gradient of a variable, we would use one

sided a difference formula, to give it as an example, let us have a simple one dimensional

problem, where boundary node 1 refers to a left most node and then suppose derivative of the

variable or a function f is specified there. Now, if the derivative is specified that has to be

discretized or approximated using a difference approximation, so the simplest choice could be

the use of forward difference scheme.

(Refer Slide Time: 04:54)

Because we have got now the grid points only to the right of the boundary node 1 okay, so we

get a very simple difference approximation del f/del x at node 1 = f2-f1divided by x2 – x1. Let

us have a clearer look at it on about, so let us choose, holistic draw our simple one dimensional

grid with different node points. Let our nodes be numbered from 1, 2, 3 and so on and the last

node is called as capital m.

Now, if the derivative boundary condition is specified here that is del f/del x at point 1 as some

known value let us call it a1, at the boundary; similar boundary condition might be specified at

node n, suppose we say that del f/del x at node point n that is given by a number, a subscript n.

Now, both of these derivatives would require their own finite difference approximation, so

implementation of derivative boundary conditions,

So, at node 1, there is no node to the left of 1, so use of central difference approximation is

ruled out, so all that we have got we can do we have got to use one sided difference formula;

one sided difference formula involving function values; values at point 1 and other interior

nodes, okay. The simplest option is of course we use a forward difference scheme; the simplest

option is 2 point forward difference scheme which we saw in our slide.

That is to say, this del f over del x at 1, this can be approximated as a difference of f – f1

divided by x2 – x1, okay. Now, if we want to go to the left; so right extreme at node n, forward

choices available, we have to look at the node n -1 n -2 and so on we have got to use only

values available at these nodes, okay, so here we have got to use this one sided backward

difference formula or backward difference scheme.

(Refer Slide Time: 09:24)

So, once again the simplest choice is 2 point BDS, it simply tells us the del f over del x at the

rightmost grid point n, this can be approximated in terms of fn-f of n -1 divided by xn-x of n -1.

Now, you know most of these formulae which we have just noted down here, this 2 point FDS

at the left boundary point 1 or the one at the BDS formula at the rightmost point, in both the

cases would truncation error this is of order delta x.

(Refer Slide Time: 10:56)

So, that is the accuracy of the approximation is first order, suppose you want to have better

accuracy with what we do? We have to involve more number of grid points, so implementation

of derivative BCs. Now, let us say we want higher order approximation, once I get one thing

this clear that we have got to use a values at only 1 point, so we need one sided difference

approximation or one sided formula selects redraw or previous diagram once again.

And let us focus on the leftmost boundary grid point which we have called 1, 1, 2 and 3 and so

on. Now, suppose you want to derive or even a higher order formula which would involve

values at least one more interior point 1, 2, 3, so now the easiest way to do would be try

polynomial fitting; polynomial interpolation for f. So, let us write down fx as a0+a1 times x –

x1+a2 times x – x1 squared.

So, we have taken a quadratic polynomial which should hopefully give us a second order

difference approximation. Now, fit this interpolation at grid points 1 and 2 interpolation to

function values at grid points 1, 2 and 3. So, if you do that, we will get f1 = a0, so we straight

we got the value of a0 at point 2 will give us f2 = a0+a1 times x2 – x1+a2 times x3 – x1. So,

this number in these equations which have written is called interpolation as equation 1.

A fitted point 1 as equation 2, fitted point 2 as equation 3 and fitted point 3; f3 = a0+a1 times x3

– x1+a2 times x3- x1 square just call this equation 4; a0 is already known from equation 1, a0 =

f1. So, now we have to solve for a1 and a2, we are primarily interested in a1 because that is

what will give us the derivative value at point 1. So, let us use equation 3 and 4 to eliminate a2,

so for this elimination all that we need to do is multiply the coefficients.

(Refer Slide Time: 16:38)

Cross multiply the coefficient of a2 in these two equations with each other. So, let us try it

equation 2 into x3 – x1 whole square, so this will give us x3 – x1 square times f2 = x3 –x1

square times f1, we have substituted for a0 as f1+a1 times x2 – x1 * x3 – x1 square+a2 times x2

– x1 square * x3 – x1 square, let us call this as equation 5. Similarly, let us multiply equation 4

by x2 – x1 square, so this will give us x2 – x1 square times f3 = x2 – x1 square times f1+a1

times x3 – x1 * x2 – x1 square+a2 times x3 – x1 square x2 – x1 square, let us call this equation

as 6.

So, now let us subtract 6 from 5, so subtract 6 from 5 and that will eliminate our a2, so we

would be left with x3 – x1 square times f2 – x2 – x1 square times f3 = x3 – x1 square – x2 – x1

square times f1+a1 times x2 – x1 * x3 – x1 square – x3 – x1 * x2 – x1 square. Let us rearrange

this terms and that gives us the value of the derivative at point 1, del f /del x at point 1 which is

equal to a1 and this gives us x3 – x1 square times f2 – x2 – x1 square times f3+x2 – x1 square –

x3 – x1 square times f1 divided by x2 – x1, x3 – x1 within brackets x3 – x2.

(Refer Slide Time: 20:55)

So, now we have got a formula and we have already seen from general results that this should

hopefully be more accurate, so this accuracy is very closer to second order. Similar formula you

can obtain at point n, so that i would put as an exercise, obtain a 3 point approximation; 3 point,

let us call it at point n to be a backward difference, so 3 point backward difference

approximation at boundary point or boundary grid point, capital n using all normal fitting.

(Refer Slide Time: 21:53)

The equation can be considerably simplified for uniform grid spacing, okay this is just a recap

the formula which we have just derived and please note that this one sided difference formula

they are also useful apart from the implementation of boundary condition. They can be used in

post processing, for instance we want to evaluate the heat flux or let us say stresses at or strain

rates at the boundary points.

(Refer Slide Time: 22:28)

Now suppose, we have done our discretization, we have implemented our boundary conditions,

now let us see; let us collect of finite difference system. So, finite difference approximation of

derivatives in a partial differential equation leads to an algebraic equation at each node in terms

of variable values at the node and its neighbouring values. So, we can write this equation by

noting its form.

So, this equation would be linear if a partial differential equation were linear, that is all

coefficients of derivatives were either fixed numbers and this equation would be a nonlinear

equation, if a partial differential equation were nonlinear. Now, even if the equation were

nonlinear, we would write it in a linearized form because that is what we would use in the

numerical solution of our discrete is a brake system.

(Refer Slide Time: 23:24)

So, now let us write that linearized form, if our equation were linear, the form would be as such

otherwise we will call it as quasi linear equation, so this quasi linear equation obtained from

finite difference discretization of a PDE, for let us say a generally scalar or phi could be any

velocity component, it could be temperature or if you are solving for pressure approximation

equation, it could be pressure.

So, let us call it a generic scalar phi at grid point p or any specific grid point can be represented

as Ap * phi p+summation over l Al phi l = Qp. Now, here this p which we have use, p

represents a node at which your partial differential equation has been approximated that is; it

represents a grid point at which the PDE, all the derivatives in PDE have been replaced by the

corresponding finite difference approximations.

(Refer Slide Time: 24:56)

And L denotes the neighbouring nodes which are involved in finite difference approximation of

derivative, in QP; we have collected all the terms which are not in terms of phi. These might be

result of body forces or source terms and so on, so this is a general linearized system or discrete

system which we would obtain for each grid point in our computational domain. Now, note that

this coefficient Ap and Al, they are functions of grid sizes as a delta x, delta y and delta z and

material properties okay.

Now, in this node p and its neighbouring nodes they form, so called computational molecule or

stencil. Now, in finite difference method what we do? We normally imply a structure grid that is

to say at each point the grid locally represents an orthogonal grid system, so now in this case we

use what we call compass notation okay that is at node pij, node p whose indices are given by

ij, its node i+1 at that is a node, which is two words to the right of it.

(Refer Slide Time: 26:02)

We will denote by eastern node or eastern neighbour node i, j – 1 is denoted by southern

neighbour and so on okay and the computational molecule that would depend on the choice of

finite difference approximation of the derivative, let us have a bit more look detailed look at

this computational molecule. So, let us get back to our board or also we also call it a stencil. So,

if we are dealing with one dimensional problem; of course we will have a grid along a line.

And x direction is called i node, i+1, i+2, i-1 and i -2, the central node which is focus of our

attention is denoted by capital P that is the present node, P represents the present grid point or

node okay the one which is to the right of it, we will say that that corresponds to the eastern

node or we will call it as eastern neighbour, i +2, that is to the east of a eastern neighbour, so we

will write it as EE i -1, it is to the left.

And we will use the symbol W to denote western neighbour node i -2, that would be called west

of west, so WW. So, this is our notation or compressed notation for the grid point. Now, the

stencil would depend on the choice of difference approximation, so suppose if you use 3 point

CDS, so computational stencil would consist of 3 nodes i, i+1 and i -1, let us use slightly bigger

circles to clearly denote the part of a stencil.

So, stencil will consist of node P, E and W. If we use 5 points CDS, then that is the stencil

would be broader, this P is i, i +1, i+2, i-1, i-2, this bigger circles to denote distance EE, WW, so

choice of stencil will also tell us and we look next at our algebraic system of equations as to

how many diagonals; nonzero diagonals are present in our system of equations. So, if you have

got a 3 point CDS, it will lead to what we call a tri diagonal matrix.

(Refer Slide Time: 30:29)

If you dealing with 5 points CDS in one dimensions, we will get a penta diagonal matrix. Now,

let us take 2 two dimensional case, so for 2 dimensional problems, we will have x as well as y

grid lines, so let us draw this x line and this is y line, the intersection point that would be our

grid point ij, the grid point to the right of it that is what we will call as eastern neighbour and

index i +1, j, the node i -1, j that will be denoted as western neighbour.

Node towards the upper side following your compass noticing this becomes what we call

northern node, so this i j+1, will use a symbol N to denote it. Similarly, this node i j-1 will use

symbol S, I will call it as southern node. So, if you have got a 5 point CDS for second order

derivatives in our; for our second order PDE, our instance will consist of these points P, E, W,

M, S.

In 3 dimensions, we have to add or we would use symbols capital T to denote the top side that

is a positive z side and symbol B to denote the negative; neighbour on towards negative z side

are what we call the bottom neighbour, so this is a schematic representation in 3D 7 point

molecule, so grid point P presented by i, j, k, so for this x direction, y direction and the vertical

side we have got our z direction, so to stop that node i j k +1, we represented by symbol capital

T.

Similarly, the one towards negative z axis that neighbour is i, j, k – 1; this is denoted by symbol

capital B is called bottom neighbour; top neighbour and bottom neighbour. Other two sides, the

same thing we have got this term neighbour along positive x axis i+1 j, k western neighbour

towards the negative x axis i-1 j, k towards positive y side, we have got what we call the

northern neighbour N.

These indices would be i j+1 k and similarly toward negative y side, there is our southern

neighbour which will have the index i j-1, so this is the popular compass notation which we use

in finite differences. This notation would also be used when we are dealing with structured

grids in finite volume, so we will come back to this notation once again when we start off with

finite volume method in later modules, okay.

(Refer Slide Time: 35:17)

So, now we have seen that look at each grid node, we get assist a simple algebraic equation

which we can always write in discretised form, similarly at boundary nodes if there are

derivatives present, we can use a finite difference approximation once again we can get an

equation algebraic equation for our boundary nodes. For the boundary, nodes where the

function itself is specified we get a very simple equation; algebraic equation.

So, if we collect all those discrete algebraic equations at all the nodes that is our internal nodes

as well as our external nodes all these else, so we get a system capital A * phi = Q where this A

is called the coefficient matrix or system matrix, capital Phi it is the vector of unknown nodal

values reach at all the grid points and in this vector capital Q; the bold Q we have collected all

the terms on the right hand side that is Q represents the vector of known terms.

Or what we call the right hand side terms, so they are contained in Q. Now, in the case of finite

difference and same would be the case in finite volume and finite element techniques. This

discrete system matrix A has got some special properties, so what are the property that system

matrix A which are obvious, the first obvious properties matrix A is always sparse, there are

nonzero entries only on few places in the matrix.

(Refer Slide Time: 37:09)

And as for its the structure of this matrix is concerned, it depends on the ordering of variables in

the vector phi, okay and the most popular ordering scheme which were used earlier was what

we call lexicographic ordering in which variables are usually ordered starting from a corner and

traversing line after line in a regular manner. The only requirement is this start from one corner

node then fall one line, the next line parallel to it, next time parallel to it and so on.

(Refer Slide Time: 37:58)

Go to the next plane in a 3D case to generate our indices okay, for instance, if we start the

ordering the variable from a corner, this traversal which we call as lexicographic ordering, it

results in a poly diagonal structure for matrix A, that is there would be only a set of specific

diagonals which are nonzero remaining all the entries of matrix A or 0. Now, we can have

different regular orderings.

So, this lexicographic ordering is not unique as it depends on the order of line traversal in

different directions x, y and z directions which way we have followed that is up to us, so we can

have different types of lexicographic ordering. Now, please note that we need to worry about

this lexicographic ordering only if one plans to use a direct solver that is we have assembled a

matrix A which is square matrix multiply a vector phi = Q.

(Refer Slide Time: 39:10)

And we want to use a standard a direct linear solver, all in that case, we need to store this full

two dimensional matrix. Most of time in fact in CFD, we do not do it. Now or matrix A just

pass, that is what we have seen that is the basic property and it has got a poly diagonal structure

for structure grids in case of our differences we have; we always use structured grid, so A would

have a poly diagonal structure.

So, now you have got 2 options; one option is we store full 2 dimensional grid and thereby we

will have many zeros, so we are just storing useless zero numbers which are of no use, we

would not, they do not contribute to our solution process in any way. So, what we can instead

do is; we can store these diagonals separately, so it is preferable to store this matrix as a set of

one dimensional arrays, one one array for each diagonal.

(Refer Slide Time: 39:56)

So, that would be a much better choice. Now, to understand this statement let us take a typical

example, suppose we are working with 2D problem; 2D elliptic problem and for discretization

suppose, we have chosen a rectangular grid is what we would use in finite difference method,

will choose a rectangular Cartesian grid.

Just for sake of argument, suppose the number of points; grid points which have used in x

direction those are 100, which is fairly common in fact we might be using a much larger

number. Similarly, let us say that in y direction, we have chosen the total number of grid lines is

again 100, so if we store all the entries, now we will have 100, total number of grid points; total

number of grid points that would be 100 cross 100.

That is where we have got 10 to the power 4 grid points in our computational domain. Now, if

you store full matrix A; if we store at 2D matrix of order N, how many entries we require? We

require N square entries and now here we have put our N is 10 to the power of 4, so if you store

all the entries in a finite difference matrix, so the storage requirement; the storage requirement

for full matrix is proportional to N square in this particular example.

It is proportional to 10 to the power 8, suppose we have used 5 point CDS, so with 5 point CDS

scheme or matrix A will have only nonzero entries along 5 diagonals. So, in this case what will

be storage requirement? So, if we store only these 5 diagonals our storage requirement or what

this also linked to our memory requirements, so storage requirement this is proportional to 5

times N.

(Refer Slide Time: 44:06)

That is in our case, N = 10 to a power of 4, so just 5 * 10 to the power 4. Now, you can say if

the proportionality constant we take here like that for each real variable, we require let us say k

bytes, so the total memory required in the first case, for the full storage this would be 10 to the

power 8k bytes and the second case; first case let us call it as capital M1 and the second case

total memory required would be M2 that will be 5k * 10 to the power 4 bytes.

So, if you take the ratio of the two; M2/M1 that is 5k * 10 to the power 4 divided by k * 10 to

power 8, we get 5 * 10 to the power -4 or which we can say approximately 10 to the power -3,

so our storage requirement if we follow or if we make use of this pasty pattern those are 1000

smaller than the full matrix storage and thus what we would in normal programming that is

what we do whenever we write of CFD programs, we never ever store full 2 dimensional

matrix.

(Refer Slide Time: 46:26)

While using finite differences will only store these nonzero entries or nonzero diagonals okay.

So, that is why we say it is preferable because we are going to save lots and lots of memory, if

we store these diagonals as one dimensional array. (()) (46:37) in modern programming

language is to use a record or a struct type for the matrix, now which one you choose? Whether

we choose a set of arrays, we can name them as AP, AN and so on.

Or we use his record as struct type, this final choice would depend on the overall data structures

chosen for the computer implementation and the language which we have chosen for

implementation. For today, we just stop here and we would take up this struct or record type

examples in our application part, so in the next lecture we will take up 1 or 2 problems and we

would use finite difference approximation to come up with the final discrete system.

We will also try and solve one problem in full and then we will have a look at an outline of a

computer program based on C language in the next 1 or 2 lectures.

