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Finite Difference Method: Methodology and Grid Notation

Welcome  to  the  module  03  on  Finite  Difference  Method.  In  the  previous  module  we  had

discussed  a  derivation  of  governing  equation  for  fluid  flow,  which  is  the  first  step  in  the

numerical simulation using computational fluid dynamics techniques. And this is the first module

on numerical methods which is based on finite differences, so we would focus primarily on finite

difference methods and its applications to different order of derivatives.
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So module outline is we will first start off today with basic methodology of finite difference

method, and then we will have a look at how do we derive finite difference approximation first

order  derivative,  next  finite  difference  approximation  of  second  order  derivatives,  and

applications of finite difference method to scalar transport problems. In today’s lecture we would

focus on finite difference method its basic methodology and the notations which we would use in

subsequent lectures.
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So now let  us see what is finite difference method a brief look up its  history, so this oldest

method  for  numerical  simulation  of  partial  differential  equations  in  fact  it  takes  back to  18

century and created to Leonhard Euler, and the two methods which is still  referred to by his

name  Forward  Euler  and  backward  Euler  method  for  initial  value  problems,  both  of  these

methods are based on simple one step difference approximation of time derivative.

And we will have a detailed look at both of these methods when we come to time discretization

aspects,  now  this  is  one  of  easiest  methods  to  use  for  simple  geometry  in  fact  this  finite

difference method started off for solving partial differential equations on rectangular geometries

and that it was cited as one of the basic limitations of finite difference method. But today we will

just say that there is no more the case then it can be utilized for solving problems on any type of

geometry.

And starting point is the conservation equation in differential form this is what we derived in the

previous  module,  and  we  would  use  the  techniques  which  we  learn  today  for  difference

approximation today and the next few lectures the difference approximations of the derivatives in

our  governing equations  and that  would be used in  obtaining  a  discrete  form for  numerical

simulation. 
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For the attractive features of our difference method these are the other schemes, it  is easiest

method to use for simple rectangular geometries, it is very easy to formulate, very easy to derive

difference equations starting from the partial differential equation for any problem, and writing a

computer program in any language translating our difference formulation is straight forward.

In  fact  so  much  so  that  today  we  routinely  give  it  to  our  undergraduate  students  to  write

computer  programs for solving  heat  conduction  problems and fluid flow problems based on

finite  difference  method,  but  one  of  the  limitations  we  decided  earlier  was  that  this  finite

difference method is primarily suited to simple rectangular geometries because the method is

based on the use of local Cartesian grids but that is no more the case.

In the beginning to overcome this limitation people used for complex geometries what we call

boundary fitted grids, but today the recent developments based on what we called the concept of

immersed boundaries that had left behind the mapping which is required in boundary fitted grids

and  this  limitations  all  together.  And  we  can  use  simple  Cartesian  grids  for  modeling  any

complex applications, this point we would elaborate little later.

Other advantage which we have got is we can use domain decomposition based solvers, if you

are dealing with very large scale a numerical simulation which we have to routinely do for a

solution of industrial problems specifically the problems which involved turbulent flow. Now the



whole problem cannot be solved on a workstation or a single computer and we have got to use

massively parallel computers for numerical simulation.

And for this  parallel  simulation we normally use what we call  domain decomposition based

approach,  and  finite  difference  method  is  one  of  the  easiest  to  adapt  to  this  domain

decomposition approach.

(Refer Slide Time: 05:23)

Now let  us  have  a  brief  look at  the  application  of  finite  difference  method  to  problems  in

complex geometry, so I mentioned 2 approaches. The first one is what we call use of boundary

fitted grids, what do we do in this approach is suppose we have got an arbitrary domain and we

have somehow got to map it to a rectangular domain so let us do these points 1, 2, 3 and 4. So

each one of these wanted to that becomes one side, 2 to 3 is another side, 3 to 4 is another side

and 4 to 1 is another side which has to be mapped okay.

We have to obtain a mapping, so that we can map it to a simple rectangular or a square domain,

let us call the co-ordinate system here by capital X, Y and the co-ordinates system which we had

for usual physical space is small x, y. So each point is mapped, let us say one goes to 1 prime, 2

goes to 2 prime and so on 3 prime and 4 prime, and this square domain which we have got

square rectangular domain this is what becomes our computational domain on which our finite

difference equation has to be solved.



So what do we do in this case our finite our partial differential equation which we have got that

has to be modified, so we have got our modified PDE using mapping transformations. There are

2 problems associated with this approach, the problems which we had is generating a suitable

mapping for an arbitrarily complex domain, so this is not a straight forward task it complicates

the things a numerical solution quite a bit.

And the second problem was handling of boundary conditions, so this is not as complicated as

the first one, but nevertheless the transformation from physical domain to computational domain

it makes the boundary conditions a bit complex okay, so these two difficulties did put certain

constraints in the application of finite difference method to the problems in complex geometries,

but nevertheless this approach was used very often in 1980s and 1990s.
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There is approach FDM for complex geometry, our second approach is based on what we call

immersed boundary method or in sort we use the acronym IBM, so the name itself implies what

we have to do is we have to immerse our arbitrarily complex domain into a simple rectangular

domain. So we would use this is based on simple Cartesian grids, so that means we do not have

to use any mapping no mapping required.



So suppose we had our arbitrarily complex domain all that we do is we just immerse it into a

rectangular grid, so this is a simple rectangular grid, then the question arises how do we take care

of these complex boundary segments which do not align themselves with these Cartesian grids.

So here curved boundaries are taken care of by introducing forcing functions, now these forcing

functions are very similar to boundary forces sorry similar to the body force terms and this is all

we have to do.

So introduce this term in our governing equation and that governing equation would be that of

momentum or energy equation, so this method was proposed long long ago by a Peskin in 1972

for what we call today is bio-fluid problems, so naturally when we are dealing with let us say the

blood flow in our arteries of heart we are dealing with fairly complicated geometries.

And we can  easily  now what  Peskin  did  was  immerse  that  complex  domain  into  a  simple

rectangular Cartesian grid take care of the complex boundary parts by introducing forcing terms

in momentum equation  and solve the problem.  Now this  is  one of  the most  fertile  areas  of

research today, so most active research today, so most active research areas in CFD and the

beauty of this method is that using IBM we can solve not just the fluid problem.

We can also solve fluid structure interaction problems, this can be handled as easily as solving a

simple flow problem, and recently many new developments taking place in the case of IBM, and

we can use this IBM together with what we call can be used with adaptively refined Cartesian

grids,  what  do you mean by adaptive  refinement  let  us  suppose  in  a  specific  region of  the

problem domain, we would like to have very fine mesh based on some error criteria.

So that we can introduce, so we can have grids of different densities in different domains to take

care of the boundaries maybe we can have a fairly fine grid close to the boundary, and these

features are permitted in the context of immersed boundary method. Now let us have a brief look

at the advantages which FDM offers in parallelization.
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So here we can use simple rectangular decomposition of a problem domain, take for instance a

simple rectangular geometry decomposition for a complex geometric would be fairly similar, so

this is a big problem domain omega, now this domain can be decomposed in smaller subdomains

let us call the omega subscript 1, omega 2, omega 3, omega 4, omega 5 and omega 6. And each

one of these subdomains  they can be mapped to a  separate  processor or separate  CPU of a

massively parallel computer.

So  we  do  not  have  to  make  use  of  any  advanced  or  fairly  complicated  mesh  partitioning

algorithm  in  this  case,  we  can  simply  decompose  our  problem  domains  a  small  small

subdomains, we can have a different types of Cartesian grids or grids of different density on each

subdomain, and the interface information can be easily passed on from one processor to another

as a part of solution process.

Yet  another  important  aspect  which  is  permitted  by  this  finite  difference  and  domain

decomposition  based  approach  is,  so  we  can  have  domain  decomposition  based  multigrid

solvers, which are very efficient  and in fact they scale with the order n where n is the total

number of nodes, and generation of what we call a sequence of grids a sequence of hierarchical

grids required in multigrid algorithm is very simple or very straight forward in case of Cartesian

grids of finite difference method.



So these important advantages are attractive features of finite difference method today make it

one of the most widely used numerical discretization scheme for simulation of very complex

turbulent flow and fluid structure problems.
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Now before proceed to details of the method let us have a look at what we called conceptual

procedure, that how do we solve a given fluid problem using finite difference method. So first

thing which we have said besides discretize the solution domain by a grid, that is our continuum

problem is represented by a set of discrete points which we will call nodes, we will elaborate on

this point little later.

And next, what we would do at each grid point we approximate the differential equation using

finite difference approximation of derivatives by use of this finite difference approximation for

the derivatives, thus converts a partial differential equation into an algebraic equation at each

grid point, we repeat the same exercise at boundary grid points as well, that boundary conditions

are fairly simple as of differential type where the solution variable itself is specified we do not

have to do much.

But  if  there are any derivatives  in boundary conditions we replace  or we approximate these

derivatives by using one sided finite difference approximation formula, so now with these 2 steps

we will  now converted  our  partial  differential  equation  or  boundary conditions  into  discrete



algebraic equation at each node interior as well as boundary nodes. Next, what do we do collect

the algebraic equations obtain at the integral node as well as boundary nodes to form a system of

algebraic equation which will usually be a sparse algebraic equations.

And we just need to solve this resulting algebraic equation to find out the values of problem

variable at each grid point, if you are dealing with time dependent problem then instead of an

algebraic  equation  you  would  get  what  we  call  a  discrete  system  of  ordinary  differential

equations, and that has to be further discretized using a time discretization scheme which we will

discuss in future module.

And once we have obtained the solution values of each of the grid points, obtaining solution at

any point in the interior domain is very simple, we can obtain the derivatives of variable let us

say you are dealing with flow field, we have got the velocity values and pressure, we can obtain

the stresses at  any point  in  a  solution domain  by numerical  differentiation  and interpolation

process, so this is our simple conceptual procedure.

(Refer Slide Time: 22:53)

Now we have mentioned grid, now let us have a look at few more things notation the grid which

we see, what are the properties of a grid? The finite difference grid is locally structured, what do

you mean by this term structured? It simply means that each grid point which would also called

node may be considered as the origin of a local co-ordinate system whose axes coincide with our



grid lines, grid lines represent the lines or curves or maybe surfaces in the space at which a

certain co-ordinate value remains constant.

Suppose, you have got grid lines of same family the properties are two grid lines of the same

family do not intersect, and the next property of the grid is that any set of grid lines belonging to

different families intersect only once.

(Refer Slide Time: 23:43)

So let us have a look at a typical two dimensional finite difference grid on a rectangular domain,

so we have used M grid lines in x direction and N grid lines in j direction, each node can be

identified by a graph indices corresponding to the intersection of the grid lines for since in this

particular node, it belongs at the intersection of x=xi grid line and y=yj grid line, so we will use a

simple symbol i,j to denote this finite difference node okay.
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So what we do each node is identified by a set of indices which are the indices of grid lines that

intersect at it. Thus, node i it represents the grid point x=xi in one dimensions, node i, j represents

the intersection of intersection point of grid lines x=xi and y=yj in 2-D that is what we saw in the

previous slide. Similarly, node i, j, k represents the intersection points of grid lines x=xi, y=yj and

z=zk in three dimensions. Now there are some shorthand notations which we use in our grids.

(Refer Slide Time: 25:24)

Let us have a look at these two shorthand notations which will get spacing and function values at

grid points. So shorthand notation the first want to denote what we call grid spacing, so let us

have a look at simple one dimensional grid space or one dimensional line here, these are our

points let us say a generic grid point we denote by index i  which corresponds to x=xi,  the next



grid point we use a symbol i+1 this corresponds to x=xi+1, and similarly, i-1 which corresponds

to x=xi-1.

Now how do we represent these spacing’s, we use a symbol capital delta to denote the difference

between these, so this x of i+1-xi, this denotes the spacing between grid points xi+1 and xi, and we

adopt a simple convention we called as a delta xi ,so xi+1-xi we would use a shorthand notation

xi, now following this notation the difference between ith grid point and one to the left of it that

is x=xi-1 that is our i-1 of grid point xi-x of i-1 we will call or we will denoted by delta xi-1.

Similarly,  the  same  convention  we  can  extend  in  multi-dimensional  space,  so  in  multi-

dimensional space in other two directions we will use the symbol j to denote our y lines, so yj+1-

yj this grid spacing would be denoted by delta yj. And let us use subscript k to represent index in

k z directions, so zk+1-zk we would use the shorthand notation delta zk okay. The next shorthand

notation function values.

The first in the case of one dimension at point xi for a generic function f, f xi we would use a

simple shorthand symbol f subscript i, so in our finite difference formula that is what we would

use. Similarly, in two dimensional space in 2-D to represent the function value at point xi, yj we

would use 2 subscript to symbol fi,j, there is no confusion you would simply write it as f of ij,

this comma mandatory in case of we dealing with slightly more complex indices for i and j  for

instance if you want to denote x of i+1, y of j+1 the function value here.

So now in this case we must use separation by comma between the subscripts, so f i+1, j+1, so

this shorthand notations make it very simple for us to write our difference equation in a compact

form,  and  they  also  help  us  to  transform  or  translate  these  formulae  into  a  computer

programming languages. Now let us see what do we do in 3-D, 3-D we will use 3 subscripts that

is f at xi, yj, zk this be would represent by fi,j,k.

Or alternatively, we can also write it as omit the comma in this case fijk as I said earlier this

comma you would require when this indices are longer than 1 symbol, for instances f xi+1, yj+1,

zk+1,  so  now  in  this  case  we  have  to  use  comma  separator  between  different  indices,  so



fi+1,j+1,k. So please remember these shorthand notations because we could use these in our

difference formula very often.
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Next,  let  us  have  a  look at  grid types  which  we would  normally  encounter  of  which fairly

frequently used in finite difference approximation, we can have what we call uniform grid, and if

the grid is not uniform we would call it simply as non-uniform grid, so what do we mean by a

uniform grid? When we would say that grid is uniform? 

(Refer Slide Time: 32:23)

If you are dealing with an one dimensional problems 1-D a grid is uniform if spacing between

each pair of grid points is the same, so if you got a set of grid points let us say  i, i+1, i+2, i- 1 and



so on, so we can simply say that xi+1-xi=x of i-x of i-1=x of i+2-x of i+1 and so on each of these

differences  are  equal  or using our complex notation,  we can write  this  as  delta  xi=delta  xi-

1=delta xi+1 and so on, and we can use drop this subscript to delta x i we can simply write this as

delta x.

So now we have got a uniform grid spacing delta x and if this were not the case we will call the

grid as non-uniform. In multi-dimensions the grid would be called uniform if spacing along each

grid line is constant, now this constant does not mean that we have to have same spacing along

each families  of grid lines,  all  that  this  definition requires  is  that  our delta  along each lines

separately that is delta xi=delta of x ofi-1=delta xi+1 and so on this=delta x.

Similarly, delta of yj=delta of yj+1=delta yj-1 and so on, and it is equal to a constant spacing

delta y along the j grid lines. And similarly, delta zk=delta of zk+1=delta zk-1 and so on and that

is equal to a constant increment or spacing delta z. So that is what we mean by this uniform grid

in three dimensions, we need not be any correlation between delta x, delta y and delta z they can

all be different, and as a corollary a grid is non-uniform if it is not uniform okay.
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Let us come to the basic concept of finite difference approximation and as you can easily guess it

is  based on would we are using approximation  for what? We are using approximation for a

derivative, so let us go back to the basic definition of the derivative which we have learned in our



calculus class. The derivative of function f with respect to x at a given location xi del f/del x at xi

how do we define it, we defined it as limit of delta x tending to 0 f xi+delta x – f xi/delta x.

So that is the basic definition of derivative, now if you want to obtain an approximation to this

derivative, what we can do that approximate value of the derivative can be obtained from the

finite difference expressions where we do not let delta x become 0, we take finite delta x that is

why we use the term finite difference, so delta f/delta x the derivative of f with respect to x at

point xi,  this can be approximated by a simple finite difference the value function f at point

xi+delta x – f xi/delta x.

Or if you use a complex notation for these function values we can write it as f of i+1-fi/delta x,

now  this  is  one  approximation  which  is  frequently  referred  to  as  forward  difference

approximation, why we called forward? Because we have used the value as a function at point to

the right of point x=xi that is what this value fi+1 means. Now there is a geometry interpretation

which we have in this case, let us have a brief look at the geometric interpretation for a function.
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Suppose, we take a generic function this f (x) and this is a curve which represents of function f

(x), we were to find out this derivative at point xi,  so derivative is given by the value of this

tangent if you draw a tangent to this point, the slope of the tangent that is what gives us the

derivative. Now suppose, we take this point xi+1, so the expression which we saw f xi+1 -f

xi/delta x, this difference is delta x, now this is given by the slope of that is line the.



So the initial  tangent let us say at point P was A, B the forward difference approximation is

basically the slope of this line A prime B prime, the same thing we can say look at if you take

instead of point to the right of point xi we can choose one towards the left that is called xi-1 and

if you see the values here these 2 values let us define this point and draw a different line let us

say this A double prime B double prime, slope of A double prime B double prime that is f x i – f

xi-1/delta xi-1 okay.

and this is what we referred to as a backward difference approximation, so that is geometric

meaning of this slopes, and it is also very easy if we take the slope of these two points here at

x=xi-1 let us join this points let us call them as S and T, we can clearly see the slope of that line

ST is a pretty close approximation it is all almost parallel to a tangent AB.

And later on we will learn that the so called central difference approximation which we can get

by using the values on both the sides of our point P that gives us a much better approximation of

the derivative compared to forward difference or backward difference approximation. Before we

can conclude this lecture let us have a look at few useful definitions which would frequently use

in coming lectures.
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We will look at two definitions order of magnitude, truncation error and order of accuracy of a

particular approximation. Now this order of magnitude is what we would use when we specified

the truncation error or the order of accuracy, so what do you mean by the order of magnitude?

Let us say that we have got quantity gx is a function g of x, it is said to be of the order h to the

power m where m>0.

We ultimately write this gx tilde O this capital O is used to represent order of so O h to the power

m if limit h tending to 0 gx/h to the power m=L, where L is a finite quantity. Now this definition

is taking from the book of Niyogi et al and it tells us when we would say that the gx of the order

O h to the power m.
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Next, the truncation error we just saw that we represent our an approximation of the derivative

by using let us say finite differences, how much error we have committed? That we can obtained

from Taylor series expansion, so truncation error represents the sum of terms in a trailer Taylor

series expansion which were deleted in obtaining the approximation of the derivative. So let us

have a look at what we just did and see what do you mean by this Tailors sorry truncation error

in the case of Forward or backward differences?
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For the sake of simplicity let us concentrate on forward difference on an uniform grid, so f at

point xi using Taylor series expansion we can write it as, so Taylor series expansion at x=xi that

gives us that f xi+1 this can be written as f at xi+delta x times del f/del x at x i+delta x square/2

del 2 f/del x square +delta x cube/3! the third derivative of f with respect to x at point xi+ so on. 

Now if you rearrange the terms that is what would we get for this del f/del x at xi=f xi+1 -f

xi/delta x- the higher order terms which we had so we will get this {delta x times del 2 f/del x

square at  xi  +del x square/3!  del  cube f/del  x cube at  xi+ so on.  So if  you want to use an

approximation this forward difference approximation you will retain only the first term on the

right  hand  side,  and  the  remaining  this  terms  in  bracket  we  can  say  that  this  is  what  our

truncation error okay.

So truncation error basically gives us that higher order terms which we omitted in obtaining a

finite difference approximation of the derivative. Next, we would use the term very often let us

say that an different scheme is such and such order occur it, what do you mean by that?
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A simple truncation error if the truncation error of a finite difference approximation is order of

delta x to the power m, then this difference approximation is said to be to have the accuracy of

order m or you would use alternative description as that the differences scheme is mth order

accurate. Now there are various approaches which are used for approximation of derivatives.
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So I  am just  provided a  list  here of  most  popular  approaches,  the first  one is  Taylor  series

expression,  the  second  one  is  based  on  polynomial  fitting,  the  third  one  is  based  on  pade

approximants, we can use difference equations and there are many other approaches. We would

focus in  our lectures  next  few lectures  on these two approaches  Taylor  series expression or

expansion and polynomial fitting.



Now remember that when we derived our conservation laws or governing equations,  we had

mostly first order and second order derivatives, the first order derivatives we got in convective

terms, and the diffusion terms on the right hand side we had second order derivatives. So we

would primarily focus on finite difference approximation of first and second order derivatives in

our next few lectures. We will stop here and we will continue our discussions on finite difference

approximation of first order derivative in the next lecture.


