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70. Large Eddy Simulations: Smagorinsky model – I 

 

 So, let us get started again. So, in the last class we were looking into one of the SGS 

models. We started with one sub-grid scale model, which is the Smagorinsky model, 

right? So, in Smagorinsky model, we essentially used idea similar to Boussinesq, where 

instead of an eddy viscosity, an SGS viscosity is used, and this SGS viscosity or nu SGS 

is essentially a function of the filter size, that means mesh size if you use implicit 

filtering. So, your numerical length scale is directly going into the simulation, the SGS 

viscosity is directly depending on mesh size. And then there was a model constant 𝐶𝑠 

which was user dependent that was one of the disadvantage. 

 

 So, in SGS or in a Smagorinsky model, we had essentially two unknowns coming out: 

one is 𝜈𝑆𝐺𝑆, other one was 𝐾𝑆𝐺𝑆. This 𝐾𝑆𝐺𝑆 is introduced only, let us say, if you want to 

solve one equation for 𝐾𝑆𝐺𝑆. So, before that, I would like to talk about this 𝜈𝑆𝐺𝑆. So, if 

you recall 𝜈𝑆𝐺𝑆 in the Smagorinsky, this was (𝐶𝑠Δ)2 delta square that is your some idea 

like a mixing length l square followed by an inverse time scale which is square root  2 

Sij, this is filtered strain rates, this is your time scale, inverse time scale. 

𝜈𝑆𝐺𝑆 = (𝐶𝑠Δ)2√2𝑆𝑖𝑗
̅̅̅̅ 𝑆𝑖𝑗

̅̅̅̅  

 

 With that, you are getting a meter square per second consistent with the dimensions. So, 

here the one problem you would face here is that close to the wall, you will have large 

strain rates. This is discussed in eddy viscosity framework very close to the wall the 

strain rates this is resolved strain rates here, right? 𝑆𝑖𝑗
̅̅̅̅  implies resolved strain rate. That 

means something you are computing for, and this goes large close to the wall, but 

𝜈𝑆𝐺𝑆 should account for only SGS fluctuations, not for all the turbulent fluctuations. 

Therefore, some kind of damping is required, or wall correction is required, right? So, 

you can take a note here what is called near wall effects. 

 



 So, 𝜈𝑆𝐺𝑆 near the wall, let us say this becomes very large due to the large value of the 

resolved strain rate that is 𝑆̅ ok. So, this is nothing, but your 2𝑆𝑖𝑗
̅̅̅̅ 𝑆𝑖𝑗

̅̅̅̅  large strain rate. So, 

one option to solve this is using a damping function. So, this becomes unphysical here. 

𝜈𝑆𝐺𝑆 this large value, this is unphysical because SGS fluctuation should go to 0. 

 

 So, you would need a damping function here. One option is option 1, you can use 

damping function similar to an idea that we used in eddy viscosity framework, damping 

function like 𝑓𝜇 equal to 1 minus e raise to minus y plus by 26, where y plus is your near 

wall distance. Another option is to have a limiter, the limiter on the length scale right. So, 

the Δ. So, we can put a limiter on that. 

𝑓𝜇 = 1 − 𝑒−𝑦+/26 

 

 So, that 𝜈𝑆𝐺𝑆 reduces. For example, if you look at let us say near wall mesh let us say is 

like this. If I take a mesh close to the wall but in the other directions, this could be like 

this is the Δ𝑦, but the Δ𝑥, let us say, is like this: a large Δ𝑥 and a small Δ𝑦 and maybe a 

large Δ𝑧 also. Let us say if I am taking in the other direction a large Δ𝑧. So, together, it 

will make the delta V or the delta itself a cube root of delta x delta y delta z right? So, this 

can be larger. 

Δ𝑉 = (Δ𝑥Δ𝑦Δ𝑧)1/3 

 

 So, this can be reset using a limiter using the same idea as this mixing length using von 

Kármán constant and the near wall distance. So, in option 2, we use a limiter. What we 

do for this limiter is the delta is set as minimum of the delta V ijk that volume at any 

location i, j, k index or you take the mixing length kappa is the von Kármán constant y is 

the near wall distance as before where kappa is 0.41 von Kármán constant, and y is near 

wall distance. So, obviously, in this situation here the y will be much smaller. 

Δ = 𝑚𝑖𝑛 ((Δ𝑉𝑖𝑗𝑘}
1/3

, 𝜅𝑦) 

 

 So, for example, if Δ𝑉 becomes large because you have used a cell stretched cell, usually 

this happens like you in the wall-normal direction. You would make Δ𝑦  smaller to 

capture gradients there, but the horizontal grids that is in the x and z directions, you 

sometimes have bit longer distance, but Δ𝑉 will then take that effect from the other two 

directions, right? So, resetting that to kappa y will solve this issue. So, this limiter can 

help with the near-wall correction terms for the 𝜈𝑆𝐺𝑆. So, now the other question is about 

if you are having 𝐾𝑆𝐺𝑆 in the computation in the Smagorinsky, then how to get this 𝐾𝑆𝐺𝑆? 

One way out is to solve for a transport equation, which is a popular technique in some of 

the open-source codes as well as commercial solvers. They use a transport equation for 



SGS kinetic energy ok. 

 

 So, we will see what it does. So, we will have one equation. one equation 𝐾𝑆𝐺𝑆 model 

that is together with the Smagorinsky we can use this to get the 𝐾𝑆𝐺𝑆 in the formula ok. 

So, here the transport equation goes similar to your k modelled equation. So, we have dou 

𝐾𝑆𝐺𝑆 by dou t plus dou by dou xj of your filtered velocity and the subgrid-scale kinetic 

energy that you are computing for equal to the diffusion term dou by dou xj of nu plus nu 

SGS dou 𝐾𝑆𝐺𝑆 by dou xj and then a production rate. 

 

 This production rate is for SGS fluctuations 𝑃𝑘𝑆𝐺𝑆
and the dissipation rate, but the 

dissipation rate is not for the SGS because, remember, the idea of an SGS model itself is 

to dissipate all the energy that is in the system ok. So, that will be the true rate of 

dissipation rate. but these are unknowns. I am computing for 𝐾𝑆𝐺𝑆, which is an unknown, 

but in that equation, now I need to figure it out what is 𝑃𝑘𝑆𝐺𝑆
, how to get epsilon right and 

also whether 𝜈𝑆𝐺𝑆 has  to be same as 𝜈𝑆𝐺𝑆 in the Smagorinsky or not. So, in the equation 

what we do is 𝜈𝑆𝐺𝑆 is calculated slightly differently here. 

 

 

 𝑢𝑗  you do not have to worry because resolved velocities are available here. So, this 𝑢𝑗  

this is the filtered or resolved right? Resolved velocity. This is known. You do not have 

to worry about it, but the unknown part, the first one, is, of course, 𝜈𝑆𝐺𝑆. This is slightly 

computed differently than in the Smagorinsky in the one when you use one equation 

model. 

 

 So, what we do is there is a model constant 𝐶𝑘  and then Δ the length scale. So, that 

makes it meter here. So, you still need a velocity scale, right? So, the velocity scale can 

come easily from 𝐾𝑆𝐺𝑆 itself because you are computing for the 𝐾𝑆𝐺𝑆. So, you can use 

square root of 𝐾𝑆𝐺𝑆. So that makes this meter meters per second meter square per second. 

𝜈𝑆𝐺𝑆 = 𝐶𝑘Δ√𝐾𝑆𝐺𝑆 

 

 So, here of course, the 𝐶𝑘  value again 𝐶𝑘  value changes from 0.05 to 0.1 in different 

codes while implementing or flow dependent and delta is same as before it is the filter 

size. But the other two things you need to figure it out. One is 𝑃𝑘𝑆𝐺𝑆
 other one is 𝜀. 

 

 So, now what should be the production rate of 𝐾𝑆𝐺𝑆 ? If you look into an energy 



spectrum, let us say I have an energy spectrum 𝐸(𝑘) ; 𝑘 is the wave number here, ok. So, 

this is the wave number spectrum let us call this 𝑘 is the wave number. So, we already 

seen this kind of a graph ok. So, in this plot, let us say somewhere here is the inertial sub-

range, right? So, if this is the cut-off size here and this is the absolute dissipation rate is 

let us say 𝜀 is here, up to here is where you are resolving, you are resolving all the scales 

up to here, and the last part is modelled. So, what will be the dissipation rate up to the 

resolution? What should that be called? Is not that the SGS dissipation rate, this is 

nothing but 𝜀𝑆𝐺𝑆 ok. 

 

 This is what is being resolved in your LES, right? So, the last part is modelled here, This 

one. So, if 𝜀𝑆𝐺𝑆  is at the cut-off, this is the 𝜀𝑆𝐺𝑆 , and we learnt from Kolmogorov 

hypothesis that there is a dynamic equilibrium here. Shouldn't that be the 𝑃𝑘𝑆𝐺𝑆
? 

Whatever is being drained out of the resolved data should be the production rate of the 

SGS, right? So, this essentially becomes your  𝑃𝑘𝑆𝐺𝑆
. So, 𝑃𝑘𝑆𝐺𝑆

 is set equal to 𝜀𝑆𝐺𝑆, and 

𝜀𝑆𝐺𝑆  can come easily from the resolved data, as I said. So, that means, I can use 2 𝜈𝑆𝐺𝑆 

and the resolved strain rates Sij Sij bar. 

𝑃𝑘𝑆𝐺𝑆
= 𝜀𝑆𝐺𝑆 = 2𝜈𝑆𝐺𝑆𝑆𝑖𝑗

̅̅̅̅ 𝑆𝑖𝑗
̅̅̅̅  

 

 This is not same as 𝜀  because 𝜀  was your you had 𝜈  as well as 𝑆'𝑖𝑗
̅̅ ̅̅ 𝑆'𝑖𝑗

̅̅ ̅̅   implying 

ensemble averaging here this is filtered strain rates here ok right? So, 𝑆𝑖𝑗 is the filtered 

strain rate. 𝑆𝑖𝑗
̅̅̅̅  is, let us say, resolved strain rates, 𝜈𝑆𝐺𝑆 is known. So, 𝑃𝑘𝑆𝐺𝑆

 is set equal to 

𝜀𝑆𝐺𝑆here and finally, epsilon itself has to be given the last sink term in the this one 

equation k SGS model. So, that comes from so finally, the epsilon here is given 

empirically. So, we take  𝐶𝜀 a model constant and then 𝐾𝑆𝐺𝑆, you have access to you are 

computing for it. 

 

 So, 3 half of 𝐾𝑆𝐺𝑆 is divided by, of course, the whole thing divided by delta, which is 

your length scale, right? So, this essentially gives you, this is nothing but your meter cube 

by second cube divided by meter which gives you meter square by second cube, 

dimensionally correct. So, this empirical formula is used to get epsilon here. And of 

course, C epsilon is 1 here, here C epsilon is 1. So, this will complete the Smagorinsky 

model itself with the combination of one equation 𝐾𝑆𝐺𝑆 model. So now, despite this, we 

still have a 𝜈𝑆𝐺𝑆 computed where the model constant is varying. 

𝜀 = 𝐶𝜀

(𝐾𝑆𝐺𝑆)3/2

Δ
 

 

 You have to choose either this constant or. So, there is a user-dependent part in choosing 

the model constant here, right? So, one way of getting rid of that is actually go to another 



type of SGS model, which is called the dynamic subgrid-scale model. So, or a dynamic 

Smagorinsky model where dynamically the constant is computed. Now, the constant is 

fixed for a given case by user. 

 

 So, it is static. Dynamic implies on the fly, that means when you are running the 

computation, you are going to compute that constant at each time step at each iteration 

you are going to compute this ok. Any doubts on this before we move to a dynamic 

Smagorinsky model? No. Okay. 


