
7. Navier Stokes: the governing equations - 2 

 

 So, now, if I expand like previously, I can see how many equations I get. So, let us say for i 

equal to 1, I would like to get equation for u1, equation for u1 velocity. So, I get 
𝜕𝑢1

𝜕𝑡
 plus, now 

j is repeated. So, we need to sum over j. So, I get, but i equal to should be 1, i should not be 

changed, i is the free index here. 

 

 I can take value 1, 2 or 3. So, we are looking into i equal to 1 means u1 velocity component, 

looking into the momentum along the x direction, x1 direction. And therefore, j is the 

summation part. So, you have to write 𝑢1
𝜕𝑢1

𝜕𝑥1
+  𝑢2

𝜕𝑢1

𝜕𝑥2
 +  𝑢3

𝜕𝑢1

𝜕𝑥3
, j is summed over the 

summation rule. 

 

 j is summed over on this side, I get −
1

ρ
, the pressure gradient along the  x1 direction plus 1 

by rho; here, j is repeated again, 
∂τ𝑖𝑗

∂𝑥𝑗
, i is 1. So, 𝜕𝜏1𝑗, j is repeated. So, 

∂τ11

∂𝑥1
 +  

∂τ12

∂𝑥2
 + 

∂τ13

∂𝑥3
. So, I 

have one equation here for velocity u1 and I need of course, the velocity is 2 and 3 also. but 

for that I can write an expression for i equal to 2, i equal to 3, I will get equation for u2 and 

u3 velocity. 

 

 So, the left-hand side is completely taken care of and but I have an extra unknowns on the 

right-hand side. So, similarly, if I write an equation for I equal to 2 the equation for u2, I will 

not write the whole part. so you can write. So, I am going to just look at this particular term 

here. So, this is  
1

𝜌

𝜕𝑝

𝜕𝑥2
. Here it is 

𝜕𝑢2

𝜕𝑥2
 and then the other term we have to write down. So, here 

this term is  important. So, let us look at dou now i equal to 2,  
∂τ21

∂𝑥1
 +  

∂τ22

∂𝑥2
 +  

∂τ23

∂𝑥3
. Similarly, 

for i equal to 3, the equation for the third velocity component. So, it is 
∂𝑢3

∂𝑡
 plus you can write 

the convective term 1 by rho dou p by dou x3 plus 1 by rho dou 31, i equal to 3. 

 

 So, tau ij, 
∂τ31

∂𝑥1
 +  

∂τ32

∂𝑥2
 +  

∂τ33

∂𝑥3
. So, we have three equations. So, if I look at number of 

equations here, I will write it here, number of equations and number of unknowns. So, I 

have three equations, equation for u1, u2 and u3 from conservation of momentum, correct? 

So, this will also help me solve the continuity equation which requires u1, u2, u3. This is 

taken care of. 

 

 But what are the unknowns in the three momentum equations here? So, we had unknowns 

u1, u2, u3. that I need to solve which is fine. In addition to that, I have pressure term and 

then I have the last terms here. It is totally 9 terms, it is a tensor, but it is a symmetric tensor 

whether it is tau ij or tau ji, you will get the same. That is the easiest way to check whether 

the tensor is symmetric or not. 

 

 So, when you expand it, you will get the same. So, we expand it as 𝜏𝑖𝑗 . Now, you can do 𝜏ji 



and give values, you will get the same tensor. that means it is symmetric tensor. So, we can 

look into only the diagonal components here 𝜏11, 𝜏22, 𝜏33,and the off diagonal three 

components that is symmetric. 

 

 So, 𝜏12 and 𝜏21 are the same. So, we can look at this. So, I get six unknowns here, extra, 

which is 𝜏11, 𝜏22, 𝜏33,, and three normal stress terms. And then, 3 shear stress terms, which is 

𝜏12, 𝜏13, 𝜏23,. So, I get 4 plus this 10 unknowns. 

 

 So, now, for pressure, those who have studied CFD would know that you can use continuity 

equation to solve for pressure. So, that is kind of taken care of. So, if I say  continuity 

equation will help me this particular term using continuity equation. So, this can be taken 

care of. Either if you know the method like let us say simple or something like that you can 

do that or one can also derive an equation for the pressure term  We would need that as we 

go into deeper into the turbulence modeling we will derive that equation later, right now it 

is not required. 

 

 So, one can also derive an equation for pressure which is called Poisson equation using 

continuity and the momentum equation one can derive that and solve that, that is also 

possible that is used extensively in CFD techniques that route. So, in any case we have 4 

equations in total, right. So, I can say 3 plus 1. The other one is this continuity. So, 4 

equations are there, 4 unknowns are taken care of, but the additional unknowns is this part. 

 

 This is the extra unknowns that is causing the problem, 6 extra unknowns. So, when 

number of equations are lesser than the number of unknowns. number of equations is less 

than the number of unknowns. What do we call this closure problem? Mathematicians call 

this a closure problem because you cannot solve the simultaneous equations when number 

of unknowns are more than the equation. If you have 3 unknowns, you need 3 equations to 

solve it as simultaneous system of equations. 

 

 So, this is the closure problem. So, what do we do? How do we proceed? We have extra 

unknowns. We have not even started turbulence modelling. We have not even looked at this 

is just Navier-Stokes equations. How do we proceed now? This you should have studied in 

the fluid mechanics course. 

 

 Exactly. So, we are using a model, right? This model, is it universal? It can be used for any 

type of fluid? Exactly. So, you have already been introduced to a model. So, a model is 

required to close the equations. So, what is that model is? Newton's law of viscosity for a 

Newtonian fluid. So, for a Newtonian fluid, using Newton's law of viscosity. 

 

 So, what does this model tell us? This model tells us that we can relate stress to strain; 

stress is proportional to the strain rate. This is the model here. So, if I apply that Newton's 

law of viscosity. So, I get Newton's law of viscosity, which is 𝜏𝑖𝑗 = 2𝜇𝑆𝑖𝑗 −
2

3
𝜇

𝜕𝑢𝑘

𝜕𝑥𝑘
, or I can 

simply say Skk, so, where Sij is the strain rate tensor. Sij is your strain rate tensor, which is 



equal to half of your dou ui by dou xj plus uj by dou xi strain rate tensor, and skk implies i is 

equal to j. 

 

 So, Skk will give me 
𝜕𝑢𝑘

𝜕𝑥𝑘
 here that component, or we can simply say it is can simply use 

𝜕𝑢𝑘

𝜕𝑥𝑘
 also and by continuity it would go away. So, whenever we use incompressible flows that 

is constant density, this term will vanish because it is 
𝜕𝑢𝑘

𝜕𝑥𝑘
 = 0 by continuity equation, we 

would have only this part. So, we have related the stress to the strain here, and this is 

applicable only for Newtonian fluids, of course. So, we already have a model. So, now, this 

was 6 unknowns, right? This is 6 unknowns is now modeled as, here, 𝜇 is, of course, an 

unknown, your molecular viscosity which you can know for a particular Newtonian fluid. 

 

 So, that is taken care of and then what do you need here other than that you would need  

the strain rate or the velocities basically you need the velocity. So, which is known to you. 

So, this is known. So, 6 unknowns have been made or related to 3 known factors, and 

therefore, the equations are closed. 

 

 equations are closed. So, you already used a model before starting what is called turbulence 

modeling. So, this kind of approach is also used as we go further. So, we will start with one 

particular aspect of it, or the beginning of what I say turbulence modelling, is to look at the 

equations for mean fluid motion and equations for fluctuating fluid motion. So, this 

particular topic would be called Reynolds averaged, Reynolds averaged Navier Stokes or 

called RANS equations.  So, in the Reynolds average Navier-Stokes equations, first of course, 

the chapter 1 part, the statistical analysis, we decompose the flow into mean and 

fluctuations. 

 

 So, first part is Reynolds decomposition, Reynolds decomposition, which basically when I 

talk about Reynolds, this is Osborne Reynolds, O Reynolds. So, we can split let us say 

velocity component u into its mean and fluctuation. So, this is the instantaneous velocity 

into the mean and the fluctuation. If I do this decomposition to the equation, I am going to 

get an equation for the mean fluid motion and also an equation for fluctuating fluid motion, 

ok? So, of course, this can also be, everything can be split. So, one can also split pressure 

also, instantaneous pressure as a mean pressure and the corresponding fluctuating 

pressure. 

 

 So, now we first look into equations for mean fluid motion. This is more exciting for 

engineers because they are interested in mean flows, average velocities, average pressure, 

temperature and so on. But this is also useful for scientists because we can separate the 

mean out and look into  what is remaining, what is the remaining fluctuations. So, we have 

equations 1 and 2, which are continuity and momentum equations. So, we split this 

equation into two parts here. 

 



 We will do the continuity equation first. Continuity equation we take. which is 
𝜕𝑢j

𝜕𝑥j
 = 0. So, I 

am going to split this into two, that is, Reynolds decompose, Reynolds decompose and 

ensemble average. This gives me 
𝜕𝑢𝑗+𝑢𝑗

′

𝜕𝑥𝑗
 = 0. 

 

 So, the operations I can split this into two part here, I also have to average it over. So, I have  

𝜕𝑢𝑗

𝜕𝑥𝑗
 +  

𝜕𝑢𝑗
'

𝜕𝑥𝑗
 = 0. I also talked about not just Reynolds decomposition, but also ensemble 

averaging. So, let me ensemble average. So, ensemble averaging and addition commute. 

 

 So, it can be written into two different separate terms. So, this gives me 
𝜕𝑢𝑗

𝜕𝑥𝑗
 +  

𝜕𝑢𝑗
'

𝜕𝑥𝑗
. Even the 

differentiation and the ensemble averaging commute here. So, that is why the averaging 

operation is over the velocity component. So, now what would happen? We already learned 

from chapter 1. 

 

 The second term would go to 0, right? This is the ensemble averaging of a fluctuation. That 

is why I thought the difference between arithmetic mean and the ensemble mean. 

Arithmetic mean, it will not go to 0. So, we will be struck with this term. With ensemble 

mean, believing that it exists, this is 0, average of a fluctuation, ensemble  mean of a 

fluctuation is 0 that we have already seen the proof and the ensemble averaging a true mean 

does not change its characteristics. 

 

 So, we get our continuity equation for mean motion, mean  fluid motion as 
𝜕𝑢𝑗

𝜕𝑥𝑗
 = 0. This 

looks fantastic, both the equation 1 which is the continuity equation itself for instantaneous 

fluid motion and this particular equation you can call it let us say equation 3. the continuity 

equation for the mean fluid motion. They look similar. 

 

 So, so far it is really amazing. And one can also look at the continuity equation for a 

fluctuating fluid motion now. So, how to do that? We can also look at continuity equation for 

a fluctuating fluid motion. continuity equation for fluctuating fluid motion. This is 

straightforward. I have, this was our equation 1 if you remember correctly. 

 

 I take equation 1, equation 3. I can subtract equation 3 from 1. So, I get equation 1 minus 

equation 3 would give me 
𝜕𝑢𝑗

𝜕𝑥𝑗
 +  

𝜕𝑢𝑗
′

𝜕𝑥𝑗
. This is the Reynolds decomposed equation 1 minus 

 
𝜕𝑢𝑗

𝜕𝑥𝑗
. So, this is equation 1 here, this part is your equation 1, Reynolds decomposed, of 

course. 

 

 So, this yields 
𝜕𝑢𝑗
′

𝜕𝑥𝑗
 =  0. Again, very interesting. So, we have got a continuity equation for 



the fluctuating motion also looking similar to equation 1 and 2. So, we will see in the next 

class whether something similar happens to momentum or some surprise is going to be 

there. Thank you. 


