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59. Pressure-Strain rate modelling and wall corrections for RSM - II

So, the wall correction this is another toπc wall correction right. So, here I am going to
consider let us say a coordinate system. let us call this S and N. N is the wall normal, S is
a wall parallel coordinate system okay where I have a wall here. That means as I
approach the wall very close to the wall I need some kind of a correction term a damπng
function term here.

and I want this damπng function to be active in the range let us say from y+ = 1 to about
y+ about 200 ok. I want the damπng function to be active in this part. that means it has to
be automatic as it is approaching the wall the damπng function it is not like you have to
explicitly model this or explicitly give a statement if y+ is this use this and that is
impossible in a generic flow problem you will not even know what is the y+ value a
priori. So it should be automatic so it is approaching wall the term should become active
as it goes away from the wall its contribution should be nil.

what we do is wall correction for first I am going to give for the wall normal component

okay. So, for wall normal component that is it is the wall normal right, wall normal𝑢
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stress that means in this particular equation for the wall normal stress equation for this
component the π nn slow. So, the wall corrections will be there for both rapid and slow ok.
So, that means the π ij itself is modeled as rapid plus slow plus it will have the wall
correction for slow, wall correction for rapid term ok, sum of many terms ok. So I would
call this prime here because it is a wall correction.

So π’nn for the slope this is - 2 C1’ . Simply modeled on the Reynolds stresses ρ ε
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because the slow terms are always depending on correlation of fluctuating quantities not
on the mean strain. So it is depending on here. So essentially what it is doing is it is
taking away two parts in the wall normal. So wall normal if you recall the two component



limit, the wall normal you will have damping I mean it damps faster than the wall
parallel components right because of the pressure damπng and viscous damπng.

So here π’nn the wall correction is it is taking two parts away and this will be given one
part each to the other it is as simple as that right. So this is your for the wall normal term

where f is the damping function where the damping function f = . So xn is your
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savior. So if you see here π’nn slow is a wall correction that means it has to get active as
you come closer to the wall and this has f and f is inversely proportional to xn.

So as you approach xn, xn is the wall normal coordinate right. So as you approach the
wall f will increase so π’nn slow will be active. If you are going very far away from the
wall f will be so small that π n and prime slope will be negligible. So it is a 1/xn
dependency just like the wall dependency we introduced for epsilon boundary conditions
and other places damping functions. So this is one part here f is the damping function So,
this takes care of only π nn or the normal stress correction for the normal stress.

We also need it for the parallel stress. There is one more thing I have to say here where
the damπng function is this and xn is the wall normal distance. you do not have to
implement this between this y+ 1 and y+ 200. All I am saying is damping function has
to be active automatically. It is not like you need to go and explicitly say become active
here.

This is the zone of its influence ok. So, now I need the other component for the wall
parallel which is u s prime square the two wall parallel stress components right. Wall
parallel for that equation the correction term is π ss slow prime of course is equal to
simply I am giving one part to each. taking two parts in the normal direction giving one
part equal to both okay. Yeah just assume you have three kids at home one the big kid
you are taking away some food from that guy and giving to two small children that is
what it is happening here.

C1’ . one part each to the both. So, you can write here that note that two parts ρ ε
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are taken or you can say removed from normal direction, wall normal direction and given
equally to the wall parallel wall parallel direction the s directions. So, this will be for the
normal stress. wall normal removed given to the wall parallel, but there is also a shear
stress term.

So, we will see that correction for the wall for the shear stress also that is for π’sn that is

when you have . So, for the shear stress for shear stress equation that is for your 𝑢
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. In that equation the π’sn slow is modelled as – 3/2 C1’ . So this gives the𝑢
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three correction terms that are used in the or the wall correction terms for the slow,
normal stress, three normal stresses and the shear stresses. But we also need it for the
rapid ok.

So the wall correction for wall correction for rapid terms so here I would give out the
expression similar idea taking two parts away and giving one part equally. The formula
changes okay slightly because we are not going to use Reynolds stresses we are going to
use the rapid term itself. So the π’nn rapid okay wall correction obviously is nothing but -
2 this is the wall normal component - 2 c2’f πnn rapid. So, the πnn rapid is being computed
from your IP model. So, minus 2 parts is taken away with the damping function of course
and the π’ss.

rapid prime indicating wall correction terms. This will be c2’f πss rapid, okay and the πsn

rapid term will take - 3/2 C’2the damping function and πsn. So, we are going to use the
corresponding the the rapid terms here for all the components. So this will complete your
wall correction implementation for rapid and slow. So this is the sum total of right.

So note that. So if you are implementing the let us say or I can say example here,
example for π11 term model. will be π11 rapid + π11 slow + π’11 rapid + π’11 slow with the
wall corrections 4, 4 terms will be there for each of this equation ok. Is this clear? Ok so,
then the only thing that is left from implementing this model is the model constants. So,
we look on to this have model constants. So, I have C1 which appeared in the rapid 1.8,
C2 is 0.6 C’1 is 0.5 and C’2 is 0.3. boundary condition here when we have this wall
correction or resolving the wall flow is straightforward right. Boundary condition is you
are implementing the no slip for your velocities, dissipation rate like before you have
options epsilon you know how to implement boundary condition and you have Reynolds
stresses which has to go to 0 on the wall.

So it is straightforward here the boundary condition ok. So the boundary conditions you
can take a note here if you want. So the boundary conditions this as well as this no slip
here right, no slip condition for the stresses and epsilon you have options like evm you
can have the near wall dependency introduced there that we had like 1/ y2 dependency
introduced you can use those boundary conditions we can also have wall functions if you
are interested in not resolving the wall using Reynolds stresses then wall functions are
also an option. So, there is a wall function derived for each of the stress here. So, suppose
if you are using wall functions the grid guidelines are similar whether you do eddy
viscosity model or Reynolds stress model the wall functions and the the wall correction
that means resolving grid guidelines are same.



So, you need to have your first grid in the inertial sub layer for when you implement wall
function. So, the linear and buffer layer are not resolved . So, when you do wall functions

if you do this then your is 3.67 u* 2, your is 0.83 u* 2 that is the wall friction𝑢
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velocity, is 2.17 u* 2, and the shear stress will be - u* 2. If you have other𝑢
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components also you can use the same expression. In many canonical flows only one
shear stress exists like the turbulent channel flow or turbulent plane squared flow that you
did. The other two components I mean by theory you cannot say that only after doing the
experiments or DNS you can realize that the other two are negligible or zero. only this
primary shear stress exists and epsilon of course, you need a wall function for that which
is same as before u* 3 by kappa y.

So, u* is your wall friction velocity, kappa is the wall or the von Kármán constant. y is
your wall normal coordinate of course, y or xn if xn is the one you are using depending on
what you want to call it. Is this clear? The Reynolds stresses modeling part So there is
instead of solving a transport equation for Reynolds stresses some would like to go ahead
with using let us say an algebraic expression like the you know we had a zero equation
model right for a eddy-viscosity also like that. instead of having a transport equation for
Reynolds stresses how about having algebraic expression for Reynolds stresses. This is
called ASM algebraic stress models or algebraic Reynolds stress models.

I will not go much deeper into it because these are not very popular but this option exists
in I think in one or two commercial codes they exist but they are not very popular. I will
just give you the model philosophy how do they know why did they thought about it and
what is the idea behind it. Just an introduction to that one. Algebraic stress models, the so
called ASM algebraic implying algebraic expression here. So what they do here is that
there is a model assumption that the transport of the Reynolds stresses is related to the
transport of the turbulence kinetic energy.

Transport implying the convective transport or the advective transport and the diffusive
transport. The two convection diffusion is of convection diffusion of your Reynolds
stresses is related to convection diffusion of turbulence kinetic energy that is the
assumption ok. So the model assumption here is that The model assumption is transport
that is convection and diffusion of Reynolds stresses is related or you can express it in
terms of transport of your turbulence kinetic energy. This is a model assumption here. So,
that means this essentially implies that symbolically I am writing C ij is your convective
transport term in a Reynolds stress equation.

- D ij. So, I will write it here the convection part, the diffusion part. So, C ij - D ij we want
it to be proportional to Ck or C tke - D K transport here. So, Ck ,D K term or I can write this



as C ij - D ij = Ck - D K and introduce the Reynolds stresses here. because the whole point is
to get an expression for Reynolds stresses. What is the point of relating the convection
diffusion of this to the convection diffusion of that? I need an algebraic equation for
Reynolds stresses.

So I am introducing that here ui prime uj prime by k non-dimensional. So therefore I
can get so now I can express this C ij D ij as what it is related to on the right hand side of
those equations right. However C ij - D ij what is this related to on the on its right hand
side? I have pij production rate term, I have π ij term and then ij and Ck - D K is equal toε

Pk - . So, therefore, I can say that Pij+ π ij - ij is equal to / k (Pk - .ε ε 𝑢
𝑖
'𝑢

𝑗
' ε)

So this is your algebraic expression. So each Reynolds stress you can obtain using some
model for each of these terms. I am just giving the idea behind algebraic stress model not
would not like to go deeper into this one. RSM is much more popular than ASMs,
Reynolds stress models or transport, solid transport equation. If you are able to get
convert solutions that is popular. But in the, so now we can say that I am more or less
completing the statistical approach in the modeling.

right. So, statistical modeling had RANS equation solving RANS equation. That means
we are interested in mean velocity and mean pressure to get that we are modeling the
turbulent terms. We are lumping it as Reynolds stresses and Reynolds stresses are either
modeled using a eddy-viscosity approach or solving transport equations for it. But the
main objective is to get mean velocities and pressure. If that is your focus that is that is a
focus for industry this is sufficient.

Of course you have to live with some error there. But beyond that if you want to capture
turbulence I am not going to model these correlation terms as lumping it as some
statistical equivalent. Instead of that I would like to let the mesh capture the random or
stochastic component. Then we move into what is called the eddy resolved methods. In
the next class I will start that part.


