
Course Name: Turbulence Modelling

Professor Name: Dr. Vagesh D. Narasimhamurthy

Department Name: Department of Applied Mechanics

Institute Name: Indian Institute of Technology, Madras

Week - 10

Lecture – Lec55

55. Dissipation rate and Pressure-Strain rate modelling for RSM - II

So, what we have left with is the fourth term which is the pressure strain rate term. So
what did we call this? I think we used either Φ ij or π ij term. In literature you will see both

the symbols being used. So the π ij exact we have a formulation .𝑝'
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So this is something that requires to be modeled because this is a redistribution term
accounting for anisotropic nature in the flow or at least I would not call it anisotropic at
least it it handles the two component limit and it also tries to drive the flow towards
isotropy because it is redistributing. Without this term anisotropy is large Let us say the
production is only occurring in one direction, then isotropy is much more large. This term
tries to drive the flow, drive the turbulence towards isotropy. It removes turbulence in one
direction and distributes to the other direction, tries to make the flow as isotropic as
possible.

It is still not isotropic because there is production rate, there is dissipation rate which is
driving the flow still to anisotropic state. But this one is working against that. So now
entire modeling idea here. So modeling anything this is not applicable to only this term.
So modeling implies relating unknowns to knowns of course using some arguments that
makes sense of course.

So what is the unknown here? Unknown is this particular term. What are the knowns that
we have right? So π ij is the unknown. So what is known? What do we have access while
solving Reynolds stress model? Reynolds stresses we have access, so knowns are ui
prime, uj prime average have access to this. What do I have access to? In addition to that
I am solving seventh transport equation, so I have dissipation rate. In addition to that I am
solving the mean momentum equation, so I have the mean strain rate also I have access to
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So I essentially have access to this this is the knowns I have. So I somehow have to
establish a relationship between π ij and this. So you can see the contrast here. It is the
fluctuation of, so it is a gradient of velocity fluctuation and its correlation with pressure
fluctuation. and how it is related to Reynolds stresses or dissipation rate or mean strain
rate we will see.

Somehow we will come closer to it okay. So to establish that what is that equation which
relates pressure to velocity? Is there an equation that you have learned? Poisson equation
right. So this you would have looked into in your fluid mechanics classes or at least in the
CFD classes it has been thought. So let us look at that one. So we need a pressure
fluctuation P’ right.

So what I need is I need a Poisson equation for P’. you would have seen a Poisson
equation for pressure instantaneous pressure itself. Now I need it for a pressure
fluctuation because that is there and I need to slowly move towards its correlation term
also with the velocity fluctuations. So to get this the procedure to get this is essentially
similar to you derive your Poisson equation. You have to take divergence of your Navier
Stokes equation minus the divergence of your RANS equation.

Just like the way we derived equation for fluctuating momentum right we derived an

equation for . for that we said we take Navier Stokes equation decompose Reynolds𝑢
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decompose and then from that minus of we took the mean momentum equation to get

transport equation for right. So, so we will do that also for to get the equation. So,𝑢
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how we will just start with this part. So, first we take the this part the first one.

So, it is of the left hand side of your Navier Stokes equation which is plus or I∂
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taking the conservative form here okay equal to the okay minus 1 by rho∂
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okay the densities I left it and I have the viscous part which is− 1
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ok. So, now I readily see that this I can interchange here.

I can first differentiate with respect to xi and with respect to t correct. So, I can
differentiate this with respect to I can do this differentiate first with respect to the xi and
then the time. So that makes it this go away right. So goes away due to continuity. This



term survives and then this term obviously survives.

The last term again the same thing I can first differentiate this with respect to xi. So, if I

rewrite this actually this particular term is nothing but it is correct . So,∂
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now I can rewrite this as . First differentiate with respect to xi and then the j,∂
∂𝑥

𝑗
(

∂𝑢
𝑖

∂𝑥
𝑖
)

then again going to 0 continuity. This equation you would have derived before how to get
a Poisson equation for instantaneous pressure.

So, I have these two a Laplacian for pressure and a complicated source term. So, we
have Laplacian here, Laplacian term for the pressure and this is a complex source term.
Why do I call it complex? non-linear term is there here okay. So you have non-linear this
makes life difficult for those who are working with incompressible flows. If you are
working with compressible flows you have an equation of state relating your pressure to
density and temperature for an ideal gas or you can take you can use thermodynamics to
get different for a different types of gas property you can still get an equation of state for
a dense phase gas and so on.

But for incompressible flow this is the only way you can relate your pressure to the
velocity computation here and you have a non-linear source term. So just put your hat as
a CFD expert and then you will see the complexity here. You have to solve this for
pressure numerically by discretizing this equation where there is a nonlinear source term.
And this those who have experience solving this know that this is the most
computationally expensive part in your Navier-Stokes calculations. That means the
velocity calculations for u v w would not take much computational effort compared to
this.

It is probably one or two orders of magnitude larger. Let us say you would require 100
iterations to get pressure converged this Poisson equation. But you probably need just one
iteration to get your velocities converged. So you are just waiting for this to done. So it
requires massive parallelization techniques.

So the Poisson equation is there for this particular component. So now I can decompose
this, apply Reynolds decomposition. So I can say apply Reynolds decomposition. So I get
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∂𝑥
𝑖
2  



fluctuating pressure term. So I get here 4 different terms here right. So I get

+ + equal to the right hand side part. So, of course now we
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have to do the other part which is the divergence of the RANS equation. So, this is one
equation now here.

So, I can take just taking this. copy and then paste this ok. So, I call this equation 1. Now
I need to do the second part which is the Rans part here. So, again I would get
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plus I have the two stress terms here, one is the viscous, one is the turbulent stress term.

So, I would get and then I have this - . So, this gives me theν ∂
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equation 2 here. Of course, I can get rid of some terms before that.

Again this interchanging interchanging here again I get . So, this term goes away∂𝑡
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𝑖

continuity again this term survives the non-linear source pressure Laplacian survives the
viscous goes away in again right. So, I can say this is dou xi here and this is dou xj. again
this goes to 0 same as previous argument continuity.

So, 3 terms survive here. So, this is my equation 2. Now I need to subtract 1 from 2 and
do some more rearrangements to get an equation for P’. We will see this in the next class.


