
5. Statistical Analysis and Cartesian tensors - II 

 

 A correlation in time. So, there I can say I have u’ at x,y,z at time t and let us say I am looking 

into u’ itself at x,y,z ,t + Δ t, Δ  t is the some time interval separation. So, let us say the first 

signal started at time t = 0, I am checking every milliseconds, okay ,2 milliseconds, 3 

milliseconds and so on till I see that after some time it is not correlated anymore. So, I can 

take a sample. So, I collect all this data to do statistics. 

 

 So, I can do this now, average over this. and you can normalize this. If you want this is 

correlation in time, if you want to get the correlation coefficient then you use the reference 

data at time t ok. This is at time t, this is at t + Δ t  here after certain time interval ok, Δ  t is 

the time interval. 

 

 This is yes. We are generally working with ensemble average here. So, in practice only as I 

said you can do that. You can do I mean many of these things we do it in as an arithmetic 

mean. So, over bar in the course represents it is ensemble mean whenever I use it. 

 

 Ensemble mean is always a function of three dimensional space and time. It is not time 

average. So, if you want a correlation coefficient then you take the reference as at t and Δt 

keeps changing, but the reference is t. So, you can do a correlation coefficient like this. So, 

the coefficient, correlation coefficient is u’ of x, y, z. 

 

 t u’ of x, y, z, t + Δ t over u’ of x, y, z ,t you take the square and then average to get the 

correlation coefficient in time or the temporal coefficient or an autocorrelation. Now there 

is also, this question has come now, this is like a vortex or an eddy is coming in and I am 

waiting after a certain time so that I know that this has passed over it and so that I can 

collect another sample, that is fine. Now sometimes you are interested to know spatially 

how large a turbulent structure is sitting, its spatial dimensions of a turbulent eddy. For that 

one can do what is called a two-point correlation or a multipoint correlation. 

 

 We have looked into only single point statistics, we can do multipoint statistics. In this one 

interesting component is two point correlation. This is to see how large this eddy is. I mean 

you cannot see everything using your naked eye. You need to quantify it. 

 

 You cannot approximately say this is like looking like 10 millimeter. I need to exactly 

quantify the size of a turbulent eddy in three dimensions. Its length in x, y, z. Then you can 

do this two point correlation which is basically then I can look at u’ of let us say the two 

point correlation in x direction, then it is x, y, z, t u’ of x + Δ x. So, Δ x is the spatial interval 

that I am giving y, z, t. 

 

 This will give this information gives me like what is the spatial extent of a turbulent eddy in 

x direction. So, I can say that this will be useful for example, when you simulate it you need 

to have these eddies sitting inside your computational box right. So, if your box let us say 



the length in x direction is let us say 1 meter, but the turbulent eddy is 10 meters precise 

then obviously you are not simulating it right. So, your box has to be bigger than the 

turbulent eddy, the largest turbulent eddy you have. And therefore, two-point correlation 

helps in finding out how large computational domain you should have. 

 

 ok So, this is useful, this multi-point statistics. So, the statistical part I will stop here. I will 

not go into much more in depth. This is sufficient to know  basically how to split the raw 

signal or the instantaneous data into a statistical component and the random component. 

Now engineers are interested in the statistical value but you need the information of the 

randomness to compute the statistical part and physicists are interested to learn turbulence 

so they are interested in the random component. 

 

 So, now we know how to split if you have the data I know how to split, but the application 

of this now is to we will use it in a governing equations. We want to split the terms inside 

the governing equation the statistical component and the random component. So, we go 

towards that part. This multipoint statistics is as I said it could be U' and V' but you need to 

know why you want to do that. right the question you need to ask the question which 

component I am using and which interval I am taking it could be a general correlation 

where you are looking into u’ and v’ correlation and it could be x + Δ x ,y + Δ y ,z + Δ z ,t + Δ t 

if you want to do that go ahead and do you need to ask the question why do I need this. 

 

 Now I want to study the correlation in each direction first in x, y, z separately so that I know 

its length. ok fine So, with this now we have to proceed to what is called the governing 

equations part, but before that all this we have done here is to we need to apply the 

statistical analysis part into the governing equation. So, the objective is  is to apply what we 

learnt in the statistical analysis to the governing equations. to see what does the equations 

tell us right just by doing this decomposition the equations can tell lot of information. So, 

that is the objective here to apply the statistical analysis to the governing equation. 

 

 So, that we can get an equation for the mean fluid motion an equation for the random fluid 

motion separately ok and then we see how to model them. alright So, before that, how many 

of you are familiar with Cartesian tensors? At least those who have taken CFD course will be 

okay. Not everybody. So, let us quickly do this so that everybody is on the same page. We 

need Cartesian tensors throughout this course. 

 

 Equations get very complicated once you start to decompose the governing equations into 

statistical and random components. So we will quickly review what is called Cartesian 

tensors, Cartesian tensor notations. will not go into the depth of the entire this tensor 

calculus we will only look into the extreme basics what is required to write equations and 

decompose them all right. So, for that part so Cartesian tensor notations are useful to write 

equations in a compact way. So, we can write equations in a compact  way in a compact 

fashion ok. 

 



 And it will also help with ease of programming, it is based on indices which means ease of 

programming as against using vector notations ok. And it is also easy to represent high rank 

high ranked matrices  So, easy to represent or write high rank matrices. So, those who are 

familiar would know this otherwise it is not a problem we will quickly get into the basics. 

So, in the vector  notation this I believe everybody will be familiar with you would write let 

us say velocity vector like this u with a arrow on top this basically implies you are looking 

into the three velocity components here u, v ,w in Cartesian tensor notation we use an index 

as I already said is based on indices ok. So, we write this as simply ui. 

 

 So, this will be u1, u2 , u3. It will go into an indexed based notation here and there is 

something called rank of a tensor, rank of a tensor. So, for this we can say  let us say this is 

the rank, let us say we have a zeroth rank. So, a zeroth rank tensor is basically a scalar ok. 

So, the name for this is a scalar and the notation let us say I am using it as some scalar 

quantity b and number of components  is basically 3 raise to n, n is 0 here. 

 

 So, this is the rank. So, this is basically a single component it is a scalar. So, an example 

could be your temperature, pressure and so on. So, then we have first rank tensor which is a 

vector instead of this arrow mark we write as I said indice we use an index bi. So, I can take 

value 1 or 2 or 3 b1 ,b2 ,b3. So, number of components is 3 ok. 

 

 So, example is your velocity vector right. velocity vector then you can get a second ranked 

tensor which is called tensor only this some of you have done even in continuum mechanics 

would know this people use in solid mechanics also they use the term tensor. So, I represent 

this as bij because this will give 9 components here a tensor. So, this is 3 raise to So, I get 9 

components. For example, your shear stress τij and then you have a third rank tensor. 

 

 This we will encounter in the turbulence class. So, we have this also called tensor. There is 

no special name for it. Let us say I call bijk. 

 

 this will give 27 components ok. So, there are some special tensors I will see what for 

example, there is something called a Levi-civitas tensor that we will use in the course ϵijk. So, 

now we will simply look at the components, corresponding components of Cartesian terms 

with respect to the vector equivalents. So, before that let us see there are three rules of 

tensors, three simple rules. One is called a free index rule. So, what this essentially a free 

index rule means that, if I take an example it will be much more clear. 

 

 So, let us say I take an example as a i + sb i = 0. So, now when I an index i occurs here, if i in 

the first term is taking a value, if i takes 1 here, then the second one also it should take the 

same term. So, the index occurring only once is valid for the values 1, 2 or 3. So, this will be 

for i  = 1, i is a free index here. So, this becomes a1  + s is scalar b1  = 0. 

 

 It cannot be 1 here and 2 there. And you can write this as, since it is a free index, you can 

change it into aj  + sbj  = 0 or k or anything. But you have to, if you are replacing the index, a 



free index, it has to be consistent throughout. This will give the same thing, j = 1 will give me 

the same answer. ok j = 1 will give me the same thing a1 + sb1 = 0. So, this is a free index we 

need to if it comes be careful that it can take value 1, 2 or 3. 

 

 And the most important one that we keep on using is called an Einstein summation rule, 

Einstein summation rule. So, this means that if indices are occurring twice in the same term, 

we have to sum it up. If an index occurs twice, index occurs twice, sum over this. Index 

occurs twice in the same term. 

 

 It is important. in the same term sum over it. I will give an example. Let us take an example 

of let us say ai bi = 0. What this means is? i is repeated twice, so it has to be summed over. So, 

this means a1 b1 + a2 b2 + a3 b3 = 0 summing over all the three components. 

 

 So, obviously you see that the summation rule reduces the rank. So, ai is a vector, bi is a 

vector, but since they occur together in the same term by summing up it has become scalar. 

So, this has become a scalar here. So, the summation rule reduces the rank of a tensor and 

there is something called a maximum rule. So, this essentially implies that an index cannot 

occur more than twice in the same term. 

 

 An index cannot occur more than twice in the same term. For example, this a i, b i, c i this is 

not allowed ok not allowed index cannot repeat more than twice and if it repeats twice you 

know you have to do the summation rule, just sum it over. These three are the simple rules 

that we need to know and then we look at two special tensors that we will use in the 

turbulence equations, special tensors one is called a Kronecker delta. So, it is Δ ij, it is also 

called an identity tensor, also called identity tensor. 

 

 So, Δ  ij can take values 1 or 0. you can take value 1 when i = j, take 0 when i not  equal to j 

ok. And then there is another tensor that we use, another special tensor is this Levis-civitas 

tensor, it is a third ranked tensor. So, this is  ϵi j k  So, this can take value 1, 0 or -1. It can take 

value 1 when i, j, k values are in successively progressive. That means it is for values let us 

say 123, 231 and 312 cyclic, cyclically varying. 

 

 It can take 0. for anything other than the 1 and minus 1. So, minus 1 is it will go in the anti-

cyclic route. So, it can take like 321, 213, 132, 0 otherwise. Cyclic, anti-cyclic, this is cyclic 

occurrence  This is anti-cyclic. So, we have learned some tensor rules, some special tensors. 

 

 Now, we go on seeing how do we represent the terms that is in the Navier-Stokes equations 

using tensor notations. So, if I take one of the term is a pressure gradient term. So, certain 

examples, the first one is let us say the gradient of a scalar field of a scalar. So, this in vector 

notations let us say it is represented as  If you are looking into the scalar quantity as 

pressure, this is nabla P. 

 

 People use this as pressure gradient term. This is represented as your 
𝜕P𝑖

𝜕𝑥𝑖
. So, gradient of a 



scalar, P scalar, but by performing a gradient operation, it has become scalar or vector. It is 

a vector now, right. So, this is P scalar here. your P is scalar let us say pressure ok, but this 

has become now a vector this is a vector now because it has 3 terms. 

 

 So, we have 𝜕P we are looking into pressure gradient along x 1 direction pressure gradient 

along x 2 direction pressure gradient along x 3 direction. So, it has become a vector. So, 

gradient operation increases the rank of a tensor and in contrast to this there is something 

called divergence operation. The divergence reduces the rank ok. 

 

 So, divergence of a  vector field. Again this term is very familiar, if I write it you will know 

what it is. 𝛥. 𝑢⃗ , you would have seen this in fluid mechanics, right the divergence of a vector 

field. So, how does this represent? We represent this simply as  
𝜕𝑢𝑖

𝜕𝑥𝑖
. This is your essentially a 

continuity equation, 𝛥.u. right So, when index is repeated, i is repeated twice, what you 

should do? It is a sum, sum over it. 

 

 i is repeated, so this will become as  
𝜕𝑢1

𝜕𝑥1
  + as  

𝜕𝑢2

𝜕𝑥2
+ as   

𝜕𝑢3

𝜕𝑥3
 . So, this has become a scalar here. 

So, divergence reduces the rank. These things you do not have to remember, which is 

increasing the rank, which is reducing the rank. The most important part is to write the 

equations in tensor notations. 

 

 Like  
𝜕P𝑖

𝜕𝑥𝑖
is your pressure gradient term,  

𝜕𝑢𝑖

𝜕𝑥𝑖
= 0 is your continuity equation or conservation 

of mass in incompressible flow. Similarly, we can have  rotation of a vector field. This also 

has a very special meaning. People call it curl of a vector or so on. So, what is this? Is there a 

physical meaning to this? vorticity right So, this has a special meaning called vorticity. 

 

 So, this one is we write this here we make use of what is called the third rank Levi-civitas  ϵ. 

So, when vorticity equation is written like this and when you want to compute you get two 

you know differential operators for the velocity plus there is a sine component  plus minus. 

Usually you mess up, you have to remember, but you do not have to remember if you are 

going to write it in tensor notations. So, I simply write this as ϵ i j k ok  ,  
𝜕𝑢k

𝜕𝑥j
. Now, you see 

this k and j are repeated index k , j  are repeated twice. 

 

 So, we need to do summation twice summation over k summation over j when you do this 

then i is the only index here free index that means it is a vector. So, this is a vector and how 

do you write this we write this as ω i just like a velocity vector ω i is the vorticity vector. And 

ϵijk will tell us the sign whether it is minus or  plus. It can take 1, 0 or - 1. So, we will easily 

know what is the sign that comes here before your gradient of the velocity field whether it 

is - or + very easily. 

 

 So, this is represented like this and then we have the Laplacian. This you get in a viscous 

stress tensor term let us say the Laplacian. also comes when if you are going to solve the 



Poisson equation for the pressure. So, this is  𝛥2u let us say this is written as
𝜕

𝜕𝑥𝑗
( 

𝜕𝑢i

𝜕𝑥j
). So, 

tensor notations reveals the true form what it looks like what which differential operator 

you are going to use in which direction and yet compact much better than the vector 

notations and with vector notations you cannot proceed in turbulence. we have to proceed 

only in the tensor notations when we average the equations to get the statistical equations 

for the statistical motion and equations for the random motion of the fluid all right. So, we 

stop here today and I will take up any questions if you have. 


