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 The other features here, and therefore, we must make sure that it has a correct near-wall 

behaviour. It has to go back to 𝑦4 behaviour in the near wall zone. So, what do we do is 

simply we introduce a damping function, ok? So, since the modelling behaviour, since 

the near wall behaviour is different, note here the near wall behaviour of exact and 

modelled term or the term that we used is modelled turbulent diffusion, exact and 

modelled turbulent diffusion, the near wall behaviour of exact and modelled turbulent 

diffusion terms are different. So, the suggestion is to introduce a damping function which 

will have 1/y behaviour. So, that it goes back to 𝑦4  behaviour in the equation. 

 

 So, where do we introduce this damping function? We essentially introduce it in the 

eddy viscosity term because that is what is coming in the modelled equation here: 
ν𝑡

σ𝑘

∂k

∂𝑥𝑗
, 

right? That is replacing this entire triple velocity correlation term. So, we introduce a 

damping function for the eddy viscosity term as something called 𝑓𝜇  is your damping 

function which will have a y raise to or 1/y behaviour. You should note here the damping 

function should be non-dimensional. Because every term in the modelled equation is 

consistent dimensionally, right? So, this 
ν𝑡

σ𝑘

∂k

∂𝑥𝑗
 is its dimensions is same as in the exact 

term. 

 

 So, the damping function should be non-dimensional, and yet it should recover the𝑦4 

behaviour in the near wall zone ok. So, we introduce this. However, 𝑓𝜇 should be non-

dimensional so that the modelled equation remains dimensionally consistent with the 

exact equation. So, we do not change the dimensions that will become incorrect. So, one 

option of introducing a damping function is to relate it to what is called you know using 

this again what is available to us which is k and epsilon using that we can introduce a 

function. 

 



 There are many damping functions available. One option is to use 𝑓𝜇  can be exponential 

of minus 3.4 divided by 1 plus RT by 50. This is squared, is one of the damping functions 

that is used in Launder and Sharma, where RT is computed as k square by nu epsilon. So, 

it is dimensionally, this is the only term that is introducing a parameter. 

 

 So, it will be non-dimensional. RT is non-dimensional; easy to see this is k is a meter 

square by a second square. So, the square of that meter rise to 4 by second rise to 4, nu is 

meter square per second epsilon is meter square by second cube. So, this is non-

dimensional. So, 𝑓𝜇 is this particular reference for this is reference is Launder and Sharma 

article ok. 

 

 So, this particular thing can be introduced and where do we introduce in the eddy 

viscosity. So, what does that mean is that you need to have something called 𝜈𝑡LRN, 

eddy viscosity 𝜈𝑡LRN must be introduced which is 𝑓𝜇𝐶𝜇𝑘2/. So, 𝜈𝑡 LRN will replace 

𝜈𝑡 eddy viscosity throughout wherever eddy viscosity is occurring this is introduced the 

damping will become 𝑦4 or it will not y raise to 4 it will just reduce one extra y 

dependency in the model equation right. It essentially 𝑓𝜇 has 1/y dependency. Now, we 

have seen only the equation for the turbulent diffusion right. 

 

 So, there is another term that we have not seen here. So, this particular term is taken care 

of this one is done right. So, there is another model another term that is modelled which 

is the your Reynolds stresses here in the production rate and the in the model equation 

using Boussinesq. So, we must see whether these two have same behaviour or different 

behaviour and whether it requires 𝜈𝑡LRN ok. To our luck, 𝜈𝑡 is appearing here. 

 

 So, if the behaviour is different, the same 𝜈𝑡 LRN will work. I do not need to do 

anything. Simply replacing 𝜈𝑡 by  𝜈𝑡LRN will work also for this. So, before that let us go 

and see what is the behaviour that I get for these two production terms right. So, this is 

the diffusion is done now let me just go and see here. 

 

 Production rate, so the Pk, so the Pk exact is you have minus ui prime uj prime over bar 

here and of course you have this dou ui bar by dou xj term is also appearing. So, dou ui 

bar by dou xj. So, this will give me sum of 9 terms here, but dou by dou x1 and dou by 

dou x3 terms are again 0. So, this essentially reduces to minus, so, j has to be 2, so it is ui 

prime u2 prime dou u1 bar by dou x, sorry dou ui bar by dou x2. Since dou by dou x1 of 

the statistically average term and dou by dou x3 of any average terms are 0. 



 

 statistically homogeneous in x1 and x3. So, only x2 term survives here. Dou by dou x2 

of ui bar, which, if I expand, I get a sum of three terms, which is minus u1 prime u2 

prime dou u1 bar by dou x2 minus u2 prime u2 prime dou u2 bar by dou x2 minus u3 

prime u2 prime dou u3 bar by dou x2. Again, u2 bar and u3 bar, these two mean 

velocities are 0 for a fully developed flow fully developed  So, only one term is 

surviving. So, I can write this particular term consistently with your x, y, z formulation. 

 

 If I use it, I get minus u prime v prime dou u bar by dou y. This is your Pk exact reduces 

to this particular term now. And what does this give? What is u prime? u prime has y 

square. Sorry, u prime has let us go back and see u prime and v prime, u prime has y 

behaviour v prime has y square behaviour, ok? So, this will give me y cube behaviour u 

prime v prime average dou u bar by dou y u bar or u instantaneous, or u prime will have 

same y behaviour as u prime. We have not done a Taylor series expansion for mean 

velocities, but if I do it I get the same thing I expand apply the boundary condition I get 

the same near wall behaviour, so u bar and u prime will have y behaviour only y 

dependency right so that means dou u bar by dou y will give me So that means I have 

only y cube behaviour for the Pk exact. 

 

 

 So, now let us see what is Pk model. So,  Pk model, we used the Boussinesq, which is 2 

nu t Sij, which is dou ui bar by dou xj plus dou uj bar by dou xi 2 nu t Sij minus 2 third k 

delta ij dou ui bar by dou xj. So, I essentially get this particular term. We have already 

expanded this once long back when we did the model constants. So, if we quickly recall it 

is essentially going to reduce to a very small term. 

 

 So, we essentially get nu t dou ui bar by dou xj square. So, I get square of this plus nu t 

dou ui bar by dou xj dou uj bar by dou xi the cross term here, and then I have minus 2 

third k delta ij dou ui bar by dou xj. This particular term goes to 0 when delta  ij is 1 that 

means i equal to j because of continuity this will go away. Due to continuity this term 

goes away only these two survives and if you expand all these terms and apply this 



statistically homogeneous as well as the fully developed condition you will see that this 

all these terms are vanishing. We have done this before to quickly do it. 

 
 

It is dou, I am going to take only dou by dou x2 term because dou by dou x1 dou by dou 

x3 term I drop dou by dou x2 and then I will have this is square term, right? So, i and i 

are repeated this particular term. So, I get ui bar dou ui bar by dou x2 only this particular 

term is surviving here plus here I have nu t of same holds good too, so I have dou ui bar 

by dou x2 dou u2 bar by dou xi so u2 bar is 0 so this is 0  fully developed. So, this entire 

term goes to 0, the last one is 0. So, I get this is now equal to nu t of dou u1 bar by dou x2 

whole square plus nu t  dou u2 bar by dou x2 whole square plus nu t dou u3 bar by dou 

x3 whole square. Again u2, u3 fully developed condition these two goes away making 

this only one term remain here. 

 

 So, I get Pk model is equal to nu t dou u bar by dou y whole square. So, this is what I am 

getting now. So, what is the dependency here? So, if I look at this, nu t is C mu k square 

by epsilon dou u bar by dou y square. So, this will give me k square y raise to 4 y square 

y raise to 4 behaviour epsilon has no y dependency and dou u bar by dou y will have no y 

dependency again squared. So, that is essentially giving me y 4 behaviour. 

 
 

 So, let us compare the exact and the model terms. The exact term has 𝑦3 behaviour, the 

modelled term has 𝑦4, and there is an eddy viscosity term, luckily. So, 𝜈𝑡LRN will have 

1/y behaviour making it 𝑦3 behaviour. So, I can simply introduce 𝜈𝑡LRN, the 𝜈𝑡LRN can 

help here, you can have 𝜈𝑡LRN will correct the near wall behaviour. and make it y cube 

like the exact. 

 

 So, epsilon, I do not have to do anything here in the previous. If I compare equations 1 

and 2, these two are the only model terms rest are all similar to epsilon this is the exact 



expression for epsilon we have just solved any transport equation for it. We did not 

model that. So, 𝜈𝑡LRN will help you give you correct near wall behaviour. So, in a low 

Reynolds number model, use a damping function, and you need to also use the correct 

mesh guidelines. 

 

 So, by merely having lot of grid points close to the wall does not mean you will get the 

correct model behaviour. You must use the damping function also. Just because you are 

capturing the near-wall data does not mean that it should be good. It may give a wrong 

data unless you damp it correctly to account for two component limit. Otherwise the 

prediction will be much different than what it should be. 


