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43. Introduction to wall-resolved simulations - II

So, let us move to what is called low Reynolds number, that is LRN models. as I
mentioned low Reynolds number refers to the locally low Reynolds number in a turbulent
boundary layer right. So, near wall region is very important capturing near a wall
capturing near wall region is important and that means you need to have a mesh
guidelines for this. So, the mesh guidelines will be like this mesh guidelines So, you
need to have a mesh say you have a wall. So, you must have grids like the first one

should be .𝑦+ ≤ 1

The first node or the first node above the wall. So, there will be another node on the wall
for boundary condition. or it will be inside the wall if you are using a ghost node
implementation that is in the CFD framework. In general let us say you have a node on
the wall.

So, this first node above the wall must be there and you must have about 5, 10𝑦+ ≤ 1 

nodes 5, 10 nodes must be there in . So, within 1 to 20 you must have at least𝑦+ ≤ 20 
like 5, 10 nodes. Depending on your exact problem how challenging it is you can vary
this ok. More the better and depends on how how many nodes you can actually account
or accommodate for depending on your computational resources. So, this is the mesh
guidelines or grid grid guidelines.

So, the objective now I will come to what we have to do it. for introducing a damping
function. So, the objective of LRN model is that the exact equation of a turbulence
kinetic energy and the modeled equation of the turbulence kinetic energy must behave
similar as we approach the wall ok. So, near wall behavior of both the terms because we
have modeled certain terms making some certain approximations. that we have to see
whether term by term they are having same behavior, near wall behavior.



So, the modelled equations of let us say k ε, ω whatever you have should behave the
same way as exact equations. As we approach wall that is as y tends to 0, the behavior of
these two should be similar, the exact modeled equations, model terms and the exact
terms must have the same. Otherwise you need to introduce this damping function or
some corrections so that the behavior is same as we approach close to the wall and we see
that this is not the case. So, in general not in general the eddy viscosity models do not
account for this. So, the model terms are different than the exact terms that we see.

So, but this will not this will not be the case since models assume turbulent condition
even in the sub layers. that is your linear sublayer. So, when we whenever we are using
eddy viscosity model we are computing eddy viscosity everywhere in the flow buffer
layer linear inertial sublayer as well as in the linear sublayer right and we do not have
access to Reynolds stresses which actually goes to 0 on the wall we have replaced
Reynolds stresses with a Boussinesq which depends on velocity gradient right. So, the
behaviours are very different of Reynolds stresses and its model counterpart which is
strain rate. So, that we will see.

So, basically what we want here that is model term and exact terms having same
behavior will not be there by default because this will not be the case since models
assume turbulent condition even the sub layer. So, now we see what these two terms
should look like. So now let us take a look at each of these fluctuations as we approach
the wall. For that we will do a Taylor series expansion. So a Taylor expansion of
fluctuations near the wall.

So that means let us say u’. at some y very close to the wall will depend on
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derivative terms as some kind of a coefficients which are functions of time and space. So,
let us call this I would like to call this as a 0.

a1 a 2 and so on ok. So, note here that note that a 0 a 1 a 2 etc are functions of space and
time that is your velocity fluctuation and its derivatives higher order derivative terms ok.
So, now I can write the equation for u’ as basically a 0 y 0 + a 1 y 1 + a 2 y2 and so on.
Similarly, v’I will use b 0 y 0 + b 1 y 1 + b 2 y2 higher order terms. Similarly, w’ the wall
parallel fluctuation which is c 0 y 0 + c 1 y 1 + c 2 y2 in the higher order terms ok.

So, now at the wall I can apply a wall boundary condition for this. So, for u’ and w’ wall
parallel fluctuation and v’ wall normal fluctuation I have both no slip and kinematic
boundary condition. So, if I apply boundary condition applying boundary condition on
the wall what do I get? So, I have this no slip comma kinematic boundary condition. So,



basically u’ is 0 u’ v’ w’ is 0 on the wall. So, = = 0 is 0 which𝑢'|
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implies a0 b 0 c0 is 0 the first one is going away.
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components. So, this on the wall here this is also 0 here. On the wall I am looking at on
the wall right. So, in CFD terminology let us say you have a wall right and then I have
nodes if you can think about this as your P node, east node, west node.

Now, look at the gradient on the wall is 0. Similarly, only the wall normal∂𝑢'
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gradient exists right and so on exists, but the wall parallel gradients are 0. So, if this∂𝑢'
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is the case then what happens to the other one by continuity we can get So, by continuity

by continuity equation = - - which is equal to 0. So, what does this imply?∂𝑣'
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Where does this comes? That is b1 = 0. So, I have this implies b1 equal to 0, b1 here,
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So, I have b1 equal to 0. these three equal to 0 a 0 b 0 c 0. So, what will happen in let us
call this equation 1. So, equation 1 reduces to u’ = a 1 y+ and so on which is a 1 y+ b2y2 +
higher order terms. So, that means to first order it is behavior is y.

So, u’ behavior as you approach wall depends on y itself right, order of magnitude y
behavior as you approach the wall to first order ignoring the higher order terms. So, v’ b0
is 0, b1 is also 0. So, it is b2y2 + it is showing a y2behaviour We do not have even have to
look at the data even here we are seeing that the wall normal fluctuation is having a y
square behaviour, but the wall parallel one u’ is having a y behaviour. Similarly, w’ is
your c 1 y+ c2y2 and so on. So, it is of the order y.

So, this is having a different behavior here y2 behavior indicating a two component limit
a different behavior. So y2 behavior here you can say it is a two component behavior, it is
kind of damping as y2 . as you approach wall the u’ and w’ damps as y, but v’ damps as
y2. So, there is a faster level of damping here even in the equation just by Taylor series
expansion ok.

So, now what did I said in the beginning the objective is to look at modeled equation all



the term term by term in the modeled equation and the term by term in the exact equation
the counterparts. of two equations and we see from these two what are the whether they
have the same y behavior or y square y cube what kind of behavior they have between the
two terms exact and its counterpart in a modeled equation. For that we need of course to
know the behavior we have the behavior of this u’ v’ w’. So, now we can go ahead and
get the behavior of other terms very easily. So, for example, we can look at the stresses.

So, stresses are occurring in the production rate of turbulence kinetic energy in the exact
equation you have . So, all the stresses are occurring. So, let us see the that𝑢
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behavior of u’ u’ average. So, what is u’ u’ itself is a1 y+ a2 y2 and so on. So, this will be
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So, it is a12, a1 if you recall it is nothing but your u’ So, it has to have your sorry a1 is

basically . So, it is a fluctuating quantity. So, it is a correlate average of a correlation∂𝑢'
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functions of space and time. So and so on. Similarly, I get so this of course, will 𝑎
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So, this the smallest term here is b2 square right v’is plus higher order terms.𝑣'𝑣' 𝑏
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So, that means this becomes plus higher order terms. So, this has a behavior the𝑏
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a behavior and then the shear stress u’ v’ if I take this.𝑦2

I would get of course, 1 u’ has a y behavior and v’ has a y square behavior. So, this will

give me a y cube behavior. So, this will give me plus higher order terms. So, this𝑎
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is giving me a behavior in the near wall region. So, we have the Reynolds stresses and𝑦3

we also need turbulence kinetic energy because that appears in the diffusion rate and so
on.

So, the turbulence kinetic energy . So, that means it will𝑘 = 1
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behavior only. So, turbulence kinetic energy is giving the behavior to first order ok.𝑦2 
So, what else we have? We have we also have the mean gradient right in the production



rate of turbulence kinetic energy Pk, Reynolds stresses multiplied by dou u bar by dou y
and so on.

So, we have that term also. So, . Before that we can say what is the term. this∂𝑢
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occurs in your dissipation rate of turbulence kinetic energy in the exact one . So,ν
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will give me if I differentiate the u’ I would get basically a1 plus higher order terms.
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So, I have y 0 behavior .∂𝑢'
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Similarly, will also give me the same one plus so I would get y 0 behavior as well
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that is no y dependency basically it is telling me this these two components have no
dependency on the y at all ok. and then I have ε which is the dissipation rate. This one is

the exact one if you recall I will have . So, here to first order as I said termsν
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we are looking into essentially this will be function of this will be sum of of ∂𝑢'
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course 9 different terms ok. So, we will have this but to first order if you take it up it

essentially comes to u’ dependency the other are higher order terms.∂𝑢'
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So, this will give me again no y dependency for an ε also. And then what else I have? I
have term, this comes in the diffusion rate . I am looking into only this y because I∂𝑘
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am going to take up a statistically stationary and homogeneous in the two direction that is
a plane turbulent couette flow. If I take it then terms vanish. So, only this∂
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terms become dominant.

So, I am looking into only that part. So, . So, k has y2 behavior. So, this will give me∂𝑘
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y behavior. y dependency for the term. And then apart from this we have the in the∂𝑘
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model term of course, the eddy viscosity is also there that I will see.

I also need what else I would need that triple velocity correlation. So, the p prime u i
prime over bar the pressure diffusion rate is not modelled if you recall we said this is
small in certain class of flows. So, we did not model and therefore, its counterpart does
not exist in the model equation. So, we will not consider that. So, we are in the diffusion
we are looking into only viscous diffusion and turbulent diffusion and its counterpart in



the model.

So, viscous diffusion will have this term will come and the other component∂𝑘
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is the turbulent diffusion rate. So, the turbulent diffusion rate is let us say the v’ let us𝑢
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say. This this will give me behavior of v’ is y2 behavior and this one each one will have
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turbulence kinetic energy behavior . So, this gives y2 behavior this is giving me y2𝑢
𝑖
'𝑢

𝑖
'

behavior.

So, this gives me essentially y4 behavior this is like turbulence kinetic energy this part.
So, we will use all these terms and substitute it in the equations to see whether the two
terms have same y dependency as you approach the wall, if not which is the case then we
will see what has to be done in the next class. Any questions on this so far we will take it.


