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Module 6 – Analysis of Fire Plumes 

Fire plume – theoretical analysis: 

An idealized plume has a point source from which a buoyant flow generates as shown in in figure (adapted from 

Karlsson & Quintiere). Simplifying assumptions are invoked to obtain a theoretical framework for the problem. 

Change in density within the plume is negligible as compared to ambient density.  

Plume density is assumed as local ambient density and buoyancy force is calculated using the difference between the 

ambient and the plume density. This is also known as Boussinesq approximation. 
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Fire plume – assumptions: 

i) Radiation heat loss is neglected. 

ii) Profiles of velocity, temperature are uniform and a top-hat profile is assumed. 

iii) Velocity of air entraining through the boundary of the plume is proportional to plume velocity at the given 

height (v = α  u), as shown in the figure. 

iv) Domain is symmetric and there is no viscous effect. 
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Following Morton et al. (1956), mean flow variables in an idealized plume are calculated by solving the conservation 

equations for mass, momentum and buoyancy. 

Fire plume – mass conservation: 

Mass flow rate of the plume (kg/s) in a differential element of height dz and radius b at a height of z from the point 

source is: 

𝑚̇𝑝 = 𝜌𝑢𝜋𝑏2 or 𝑚̇𝑝(𝑧) = 𝜌𝑢(𝑧)𝜋[𝑏(𝑧)]2 

Mass conservation is written as “Increase in mass flowing up through differential element dz = Mass entrained 

through sides of dz per unit height”. 

𝑑

𝑑𝑧
(𝑚̇𝑝) =

2𝜋𝜌∞𝑏(𝑑𝑧)𝑣

𝑑𝑧
 

Here, 2πb(dz) is circumferential area through which air entrains with velocity v into the differential element dz. 

Combining these: 

𝑑

𝑑𝑧
(𝜌∞𝑢𝜋𝑏

2) = 2𝜋𝜌∞𝑏𝛼𝑢 

Fire plume – momentum conservation: 

Here, ambient density is taken. On simplification, 

𝑑

𝑑𝑧
(𝑏2𝑢) = 2𝑏𝛼𝑢                (𝐴) 
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Momentum conservation is written as “Rate of change of momentum through height dz = Buoyancy force + Viscous 

forces”. Here, viscous force is neglected. 

𝑑

𝑑𝑧
(𝑚̇𝑝𝑢) = (𝜌∞ − 𝜌)𝑔𝜋𝑏2 

Using the expression for plume mass flow rate, 𝑚̇𝑝: 

𝑑

𝑑𝑧
(𝜌∞𝜋𝑏

2𝑢2) = (𝜌∞ − 𝜌)𝑔𝜋𝑏2   or   
𝑑

𝑑𝑧
(𝑏2𝑢2) = (

𝜌∞ − 𝜌

𝜌∞
) 𝑔𝑏2 

Fire plume – energy conservation: 

Energy flow (convective heat flow, 𝑸̇𝒄) at height z is written as: 

𝑄̇𝑐 = 𝑚̇𝑝𝑐𝑝∆𝑇 = 𝜋𝑏2𝜌𝑢𝑐𝑝∆𝑇 

Here, 𝑸̇𝒄 is 60% - 80% of 𝑸̇ & ΔT=T(z)–T∞, T(z) is temperature at height z. Since top hat profile is assumed, T does 

not vary along the plume radius and only varies with z. From ideal gas law: 

𝜌T = 𝜌∞𝑇∞ 

ρ & ρꝏ are plume & ambient densities. ∆T = T - Tꝏ and ∆ρ = ρꝏ - ρ:   

∆𝜌

𝜌∞
=
∆T

𝑇∞
= (

𝑇 − 𝑇∞
𝑇∞

) (
𝑇∞
𝑇
) 
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When T → Tꝏ,  
∆𝜌

𝜌∞
≈ (

𝑇−𝑇∞

𝑇∞
) 

Fire plume – analysis: 

Writing ∆T in terms of 𝑄̇𝑐 from energy equation, and using expression for ∆ρ/ρ, momentum conservation is written 

as: 

𝑑

𝑑𝑧
(𝑏2𝑢2) = (

∆𝑇

𝑇∞
)𝑔𝑏2 =

𝑄̇𝑐𝑔

𝜋𝜌∞𝑢𝑐𝑝𝑇∞
               (𝐵) 

Equations (A) and (B) are two ordinary differential equations having unknowns b and u for a given 𝑄̇𝑐. These can be 

solved simultaneously to get b and u as a function of z. Let b = C1z
m and  

u = C2z
n. Using these in equation (A):  

𝑑

𝑑𝑧
(𝐶1

2𝑧2𝑚𝐶2𝑧
𝑛) = 2𝛼𝐶1𝑧

𝑚𝐶2𝑧
𝑛 ⇒ 𝐶1

2𝐶2(2𝑚 + 𝑛)𝑧2𝑚+𝑛−1 = 2𝐶1𝐶2𝛼𝑧
𝑚+𝑛   (𝐶)    

Using b = C1z
m and u = C2z

n in equation (B) 

𝑑

𝑑𝑧
(𝐶1

2𝑧2𝑚𝐶2
2𝑧2𝑛) =

𝑄̇𝑐𝑔

𝜋𝜌∞𝐶2𝑧𝑛𝑐𝑝𝑇∞
 

⇒ 𝐶1
2𝐶2

2(2𝑚 + 2𝑛)𝑧2𝑚+2𝑛−1 =
𝑄̇𝑐𝑔

𝜋𝜌∞𝐶2𝑧𝑛𝑐𝑝𝑇∞
                 (𝐷) 

Equating powers of z on both sides in equations (C) & (D), m = 1 and n = -1/3. Therefore, equations (C) and (D) are 
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written as: 

𝐶1
2𝐶2(5/3)𝑧

(
2
3
) = 2𝐶1𝐶2𝛼𝑧

(
2
3
)   (𝐸)    

𝐶1
2𝐶2

3(4/3)𝑧(
1
3
) =

𝑄̇𝑐𝑔𝑧
1
3

𝜋𝜌∞𝑐𝑝𝑇∞
     (𝐹) 

Fire plume – solution: 

From this, C1 and C2 are evaluated as, 

𝐶1 =
6

5
𝛼   &   C2 = [

25

48𝛼2
𝑄̇𝑐𝑔

𝜋𝜌∞𝑐𝑝𝑇∞
]

1
3

 

Using these, 

𝑏 =
6

5
𝛼z   &   u = [

25

48𝛼2
𝑄̇𝑐𝑔

𝜋𝜌∞𝑐𝑝𝑇∞
]

1
3

𝑧−
1
3 

Conservation of buoyancy is: 

𝑑

𝑑𝑧
(𝑏2𝑢𝑔 (

𝜌∞ − 𝜌

𝜌∞
)) = 0 ⇒ 𝑏2𝑢𝑔 (

𝜌∞ − 𝜌

𝜌∞
) = 𝐵 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

Using energy equation as below, constant B can be determined. 
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𝑄̇𝑐 = 𝑚̇𝑝𝑐𝑝∆𝑇 = 𝜋𝑏2𝜌𝑢𝑐𝑝(𝑇 − 𝑇∞) 

From this, B can be determined in terms of 𝑄̇𝑐 as: 

𝑏2𝑢𝑔 (
𝜌∞ − 𝜌

𝜌∞
) = 𝑏2𝑢𝑔 (

𝑇 − 𝑇∞
𝑇∞

) = 𝐵 =
𝑄̇𝑐𝑔

𝜋𝜌∞𝑐𝑝𝑇∞
 

From the above equation, ∆𝜌/ρꝏ= ∆𝑇/Tꝏ  can be evaluated. 

(
𝜌∞ − 𝜌

𝜌∞
) =

𝐵
2
3

(
6
5
) 𝛼

4
3𝑧

5
3 (

9
10
)

1
3

= (
5

6
)

(
𝑄̇𝑐𝑔

𝜋𝜌∞𝑐𝑝𝑇∞
)

2
3

𝛼
4
3 (

9
10
)

1
3

𝑧−
5
3 = 0.863 𝐵

2
3 𝛼

4
3 𝑧−

5
3 

Fire plume – mass flow rate: 

Mass flow rate of the plume as a function of z is calculated as, 

𝑚̇𝑝 = 𝜋𝑏2𝜌𝑢 =
6

5
[
9

10
𝜋2𝜌∞

2
𝑔

𝑐𝑝𝑇∞
]

1
3

𝑄̇𝑐

1
3 ∝

4
3 𝑧

5
3 

These are approximate plume solutions considering point source.  

Improvements: Here, buoyant flow originates from a finite area (fuel bed) that is located at a distance z0 from virtual 

origin.  
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Instead of top hat temperature and velocity profiles, more realistic Gaussian profile is used. Flame radius is defined 

as the radial location where temperature has reduced to half of the centreline value at a given height. Plume radius, 

defined on the basis of velocity profile, is the radial location where the axial velocity has reduced to half of its 

centreline value.  

Fire plume – improved solution: 

Expressions for plume radius and temperature difference are obtained with the support of experimental 

measurements. The plume radius (bT) based on temperature profile is expressed as, 

𝑏𝑇 = 0.12 (
𝑇0
𝑇∞

)
0.5

(𝑧 − 𝑧0) 

Here, T0 is the centerline temperature at the axial distance of z.  

Difference between the centerline temperature and the ambient temperature [T = T(z) - T] is expressed as, 

𝛥𝑇0 = 9.1(
𝑇∞𝑄̇𝑐

2

𝑔𝑐𝑝2𝜌∞2
)

1
3

(𝑧 − 𝑧0)
−
5
3 

Centreline velocity as a function of plume height is expressed as, 

𝑢0 = 3.4 (
𝑔𝑄̇𝑐

𝑐𝑝𝜌∞𝑇∞
)

1
3

(𝑧 − 𝑧0)
−
1
3 
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These modified equations are called strong plume relations. These expressions are valid only in the plume region, 

when z > hf. Virtual origin (z0) is estimated when the centerline temperature as a function of z is known accurately. 

As per the relation for T0, a plot of (T0)-3/5 as a function of z is a straight line, which intersects the z-axis at z0. A 

correlation for z0 (in m) following Hesteskad, is written in terms of total heat release rate, 𝑸̇ (in kW) and D (in m), 

as: 

𝑧0 = 0.083 𝑄̇2/5 − 1.02𝐷 


