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Welcome back. in the last few videos, we saw how to use linear models, so the models that we

had been using but because we were dealing with steady state heat conduction without heat

addition, we had

𝑑2𝑇

𝑑𝑥2  =  0

So, our forward model which was from physics said that the temperature would be of the form of

a constant plus some other constant multiplied by x. Now let us say we have heat addition and let

us say constant heat addition. So, this would give us something like, is some heat addition.

𝑑2𝑇

𝑑𝑥2   =  
−𝑞

𝑣

𝑘
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So, you would have a heat source term on the right-hand side. So, the solution to this invariably

is going to be a quadratic so something like,

𝑇 =  𝑤
0
 +  𝑤

1
𝑥 +  𝑤

2
𝑥2

(Refer Slide Time: 01:37)

So, you can imagine a case very similar to the one that we have done, where you have a slab,

some thermocouples somewhere in the middle, but you have heat addition and in fact, we have

given one such problem within the assignment for this week. So, if we have something of that

sort and we have a similar problem to the one above like, I give you the temperatures and I ask



you to find out what this heat addition is or what the conductivity etc. then how would you go

ahead and proceed with that.

(Refer Slide Time: 02:02)

As it turns out you need what I am going to call right now quadratic regression, more specifically

We will see next week that all these are just special cases of linear regression. in fact, you might

probably suspect that as I do this problem that this looks just like linear regression. But let us

start with this model. let us say we have a case not just the slab but some case where we have,

𝑦
^

= 𝑤
0

+ 𝑤
1
𝑥 + 𝑤

2
𝑥2
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The rest of the process remains the same in that, we still make a table. So, we have a serial

number, we have x we have y, and then we have and maybe some of you might prefer to even𝑦
^

put an extra column for . So that is just calculated. So, once we do that, we basically have to𝑥2

calculate and we have to calculate the corresponding error which is . And then we𝑦
^

𝑦 −  𝑦
^

calculate J just like before the cost function is still the same thing whatever be the prediction sum

up half of ( )2.𝑦 −  𝑦
^

𝐽 =  1
2  

𝑖
∑ 𝑦

𝑖
− 𝑦

𝑖

^( )2

You might notice that sometimes I keep m at the bottom and sometimes I do not really speak it is

more out of forgetfulness rather than anything else. Generally, it is a good idea to take mean

square error.

𝐽 =  1
2𝑚  

𝑖
∑ 𝑦

𝑖
− 𝑦

𝑖

^( )2

So, the error still remains the same. So, the mean square error is the error that we are trying to

minimize. So, our problem now becomes if you want the best coefficients to find out , and𝑤
0

𝑤
1

, which minimize J. so far as you can see there is not much change in the entire process.𝑤
2
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So now, J is , this we are going to call , just like before, where was1
2  

𝑖
∑ 𝑦

𝑖
− 𝑦

𝑖

^( )2
∑ 𝐽

𝑖
𝐽

𝑖

, but we are going to set,1
2  𝑦

𝑖
− 𝑦

𝑖

^( )2

∂𝐽
∂𝑤

0
 =  0,  ∂𝐽

∂𝑤
1

 =  0,  ∂𝐽
∂𝑤

2
 =  0 
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And you will see that calculating these is not very different from what we did before. Remember

or let us say If I do,∂𝐽
∂𝑤

0
 

∂𝐽
∂𝑤

0
 =  

∂𝐽
𝑖

∂𝑦
^  ∂𝑦

^

∂𝑤
0

This is how we calculated in the first video. So, you can check that out,

∂𝐽
∂𝑤

1
 =  

∂𝐽
𝑖

∂𝑦
^  ∂𝑦

^

∂𝑤
1

And

∂𝐽
∂𝑤

2
 =  

∂𝐽
𝑖

∂𝑦
^  ∂𝑦

^

∂𝑤
2

You will notice that these terms the terms are exactly the same and all these are simply,
∂𝐽

𝑖

∂𝑦
^  

∂𝐽
𝑖

∂𝑦
^ = 𝑦

𝑖

^
− 𝑦

𝑖



So, this we had done in the previous videos as well. Now the only thing that changes now is

these terms. Now recall is , so these derivatives now become straight𝑦
𝑖

^
𝑤

0
+ 𝑤

1
𝑥 + 𝑤

2
𝑥2

forward,

∂𝑦
^

∂𝑤
0

 =  1,  ∂𝑦
^

∂𝑤
1

 =  𝑥,  ∂𝑦
^

∂𝑤
2

 =  𝑥2

So now if we look at these 3 equations, we can now rewrite them in the following form.

(Refer Slide Time: 06:35)

, would mean that,∂𝐽
∂𝑤

0
 =  0

1
𝑚  

𝑖=1

𝑚

∑ 𝑦
𝑖

− 𝑦
𝑖

^( ) = 0 

is multiplied by 1 so this is equal to 0, i = 1 to m we had that . So, I will retain it
𝑖=1

𝑚

∑ 𝑦
𝑖

− 𝑦
𝑖

^( ) 1
𝑚

similarly, , would mean,∂𝐽
∂𝑤

1
 =  0

1
𝑚  

𝑖=1

𝑚

∑ 𝑦
𝑖

− 𝑦
𝑖

^( )𝑥
𝑖
 = 0



, now this is weighted by , you might remember that these 2 equations are the1
𝑚  

𝑖=1

𝑚

∑ 𝑦
𝑖

− 𝑦
𝑖

^( ) 𝑥
𝑖

same as the linear regression equations nothing really change. Except now actually has a𝑦
^

quadratic term also, as we will see that affects the equation slightly.

(Refer Slide Time: 07:36)

So now the third equation is , so this will give us,∂𝐽
∂𝑤

2
 =  0

1
𝑚  

𝑖=1

𝑚

∑ 𝑦
𝑖

− 𝑦
𝑖

^( )𝑥
𝑖
2 = 0

now instead of , you are now going to get equals to 0. So let us label these1
𝑚  

𝑖=1

𝑚

∑ 𝑦
𝑖

− 𝑦
𝑖

^( ) 𝑥
𝑖

𝑥
𝑖
2

equations as 1, 2 and 3. Now we can expand them.
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We now know that is . So, if we plug that in, let us say in this equation, I𝑦
^

𝑤
0

+ 𝑤
1
𝑥

𝑖
+ 𝑤

2
𝑥

𝑖
2

am just going to expand equations 3 and Let as a mild exercise for you to expand equations 1 and

2 so if we expand equation 3,

1
𝑚  

𝑖=1

𝑚

∑ (𝑤
0
 +  𝑤

1
𝑥

𝑖
 +  𝑤

2
𝑥

𝑖
2 −  𝑦

𝑖
)𝑥

𝑖
2 =  0

I am going to flip the sign, so that it is easier to write, because I am just taking a negative of this

equation and it will still stay the same. So, you are going to have 𝑤
0
 +  𝑤

1
𝑥

𝑖
 +  𝑤

2
𝑥

𝑖
2 −  𝑦

𝑖

times = 0.𝑥
𝑖
2

In fact, in this whole case, I really should have put because of the derivative in each case the

derivative is . So, you know that minus is there anyway.𝑦
𝑖

^
− 𝑦

𝑖
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So, if we come here, we see the first term is . So, I can now write it as before as , the
𝑤

0
𝑥

𝑖
2

𝑚 𝑤
0
𝑥2

next term says , this term is and the third term is . And this whole thing can𝑤
1
𝑥3 𝑤

1
𝑥

𝑖 
× 𝑥

𝑖
2 𝑤

2
𝑥4

be taken to the right-hand side and written as .𝑥2𝑦

𝑤
0
𝑥2 + 𝑤

1
𝑥3 + 𝑤

2
𝑥4 = 𝑥2𝑦

So, I am going to call this equation 6. Now equation 4 will correspond to this, I am going to

write that down directly.
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So, equation 4 is

𝑤
0

+ 𝑤
1
𝑥 + 𝑤

2
𝑥2 = 𝑦

This is equation 4 and equation 5 is

𝑤
0
𝑥 + 𝑤

1
𝑥2 + 𝑤

2
𝑥3 = 𝑥𝑦

Let us just copy equation 6 and put it here, this is equation 6. Now the way this helps and all of

you can probably see the pattern at this point in a straightforward fashion, the first equation says

the same thing that it did in linear regression, that is the prediction at the average location should

be the average of the predictions.

So, this equation has exactly the same meaning as linear regression. now notice all that is

happening is in each equation an extra x is introduced. So, this becomes , this becomes , this𝑥 𝑥2

instead of x, becomes , this becomes , becomes , , y becomes xy and then . So,𝑥2 𝑥3 𝑥2 𝑥3 𝑥4 𝑥2𝑦

this now is a system of 3 equations in 3 unknowns. what are the unknowns?

The unknowns are , , and and just like last time you now have to calculate these extra𝑤
0

𝑤
1

𝑤
2

terms, you we did calculate , but apart from that you need you need you need𝑥2 𝑥3 𝑥2𝑦 𝑥4 

etcetera. So, we leave this as an exercise for you, there is no simple compact formula here. there

is a formula that you can derive but it is kind of messy. So, in any quadratic regression problem

so set up the equations and solve for , , and just like, we solved for and in linear𝑤
0

𝑤
1

𝑤
2

𝑤
0

𝑤
1

regression.

So, this is a simple solution. you can do it either by Gauss elimination or by Kramer's rule or

whichever method you are familiar with, but nonetheless, it requires the solution of a

three-by-three system. now what we have done now is repeat exactly the same process that we

did for linear regression and get here. now you should be able to do in case.
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Let us say my right-hand side here was not a constant, but actually, a linear function. If it is a

linear function, then your hypothesis function or your forward model would have a cube. So, you

would add an additional term and there will be 4 equations in 4 unknowns. So on and so forth so

quadratic regression can easily be extended to polynomial regression. But we will see this

formally in the next week. so intuitively you can see that the same process that applies to a linear

regression actually applies to quadratic, polynomials.

So, there are 2 questions how do we sort of make this without this mess of writing the equations

which we will see next week. how to automatically generate that matrix and the second thing is

there other problems, which can be solved by the same procedure. So, we will look at a series of

linearizable problems in the next week. So please do the assignment if you are taking this course

for credit. Thank you.


