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Welcome back. So, we will just continue our discussion from last part. In the last part we looked 

at how we can use linear regression to solve an inverse problem? In this part, we will look at an 

important quantity called the goodness of fit. What the goodness of fit determines is how good the 

regression fit we got was? So, what this determines is how good the fit we proposed is? So, in the 

last video we had seen the example of a linear model with the data that was given here in this 

inverse problem. 
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And we had obtained both w0 and w1 the coefficients of the linear model and these were the values 

that we obtained. 
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Now once we obtain these values, once we plotted them remember, this was the best fit, that we 

had obtained this red line and the data is sort of scattered around this best fit line. So again, the 

question really is how good is the best fit line? Now why do we ask this question? Suppose 

somebody says that it is not a line which is the best fit, but let us say a quadratic curve which is 

the best fit how do, you compare these 2 different proposals for the hypothesis function proposals, 

for the function which actually fits the data. 

 



Now in this particular case we had already used a linear fit because we set theory predicts that but 

suppose somebody has a new theory, they say no the theory that you used which was that you 

know k 
dT

dx
 is 0 is wrong and here is experimental evidences that, Then we needed a comparison 

between essentially noisy data fits like our best fit line and some other fit and we need to compare 

2 different theories, so this is useful in comparing 2 different fits. 

 

So here is an idea, we will start with the preliminary proposal. So, which I will call proposal 1. 

This is not quite accurate, but it will give us an idea of how to proceed to determine goodness of 

fit. So, the idea is very simple. we look at how good this fit is by finding out the error. So, I say 

we already have a measure for our error. So, we have S, 

𝑆 =  ∑(yi − yî)
2 

Remember yî is essentially our fit, And, we find this out and this is a measure of goodness of fit. 

 

We sum this over all data points so this is our proposal remember this is not quite accurate for 

reasons that I will tell you. And we say that if S is high or large, then this means it is a bad fit and 

if S is small, then this is a good fit. So, this is our proposal on what a possible measure of goodness 

of fitness. So, it turns out that this has 2 problems. So, this entire proposal has 2 problems so those 

problems are as follows. 
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Firstly, high or low with respect to what? so this is a general lesson in science and engineering. 

one cannot talk about something being high or low without saying with respect to what. so there 

has to be a non-dimensionality or some comparison. For example, if I measure the temperature 

here, I have measured it in degree centigrade. Suppose I measure it in kelvin, it might look that 

well in this case it would not be kelvin but suppose I measure it in Frenheit it might look like the 

temperature gap is high. 

 

If this distance is measured in millimeter versus this distance is measurement in kilo kilometer 

these are just numbers. So will I say the distance of one is high or what you will say one what 1 

kilometer, 1 meter, 1 millimeter and depends on the physical context. So, without context without 

some comparative number okay so we need some base of comparison and without that we cannot 

really say. now the second problem is related to the first problem. 

 

So, we would like a quantitative measure, absolute measure of goodness. So, like I said it is related. 

for example, good equal to 1 on a scale of 0 to 1 or as a scale of 0 to 10, we are going to choose 0 

to 1 and we can say that bad is 0. So, these 2 problems turn out to be related and if we use something 

of this sort this will not satisfy it. For example, good and excellent fit will be 0 but a bad fit will 

not be one it will become a very large number as it turns out both these problems can be addressed 

by what is known as the coefficient of determination. 

 

So the solution to these problems is our proposal 2 or the, this is called the coefficient of 

determination. 
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So, before we go there the idea is simple, the idea is scale, the residual error based on the simplest 

model. So, the idea is like this, supposes we have data, so data is scattered like this, now we have 

proposed the linear model so we are going to propose some model like this. So, this is the best 

model, but we can have the simplest model. The simplest model in this case is simply something 

like this. 

 

What do I mean by the simplest model? the simplest model says �̂� is a constant, that is regardless 

of what the location is. The temperature is the same and the temperature is going to be the mean 

that is �̅�. So, I hope this is clear. So, for example we had several model proposals here this was the 

best fit these 2 are bad fits, but a really bad fit could be possibly this. 

 

So, you simply take the average of these temperatures and say that is actually what is going on 

physically. I have some average temperature and I have some erroneous results some errors around 

it. So, this is a 𝑦 = �̅� or �̂� = �̅�. this is a constant model or a simple model as you can see it is a 

very bad model. But nonetheless it is a model that we can calculate very quickly and we can say 

whatever it is my error base lies here. 

 

Even if I do nothing, I will get a very simple model like this, at least any best fit model any new 

model that I am proposing should be more accurate than this. So, if it is only going to perform as 

well as a constant model, then it is a bad model. so will give you give you a bad score, if it is a 

really good model, I will give it a high score okay so let us use that. 
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So now remember we had this original error which was ∑(𝑦 − �̂�)2, this we are going to call Sr, 

which is called residual sum of squares. So, our proposal one was this itself would be the goodness 

of fit, but we say let us compare this with respect to something else. So, the comparative quantity 

that we are going to compare with is what happens with a bad model. with a bad model you simply 

have,  

Sr  =  ∑(yi − �̂�)2 

 

So, this is a bad model, this is sometimes called total sum of squares, St,  and as we see and you 

will know this much statistics I assume, but anyway we will come back to this.  

St  =  ∑(yi − �̅�)2 

This is variance of the base model and this is variance with the proposed or the best. this is my fit; 

this is my base model. Now we can compare Sr and St. So, we can say a measure a decent measure 

a scaled measure of error is Sr by St. 

 

But we are going to do one more thing, we will say it is, 

r2  =  1 - 
Sr

St
 

Because let me come to that quickly r2  or let me use small r2, because we used capital before. So, 

this r2 is known as coefficient of determination let us look at its properties.  
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Now in the worst-case scenario or let us first take the best-case scenario. What is the best-case 

scenario? model fits really well, for example, in this case, let us say every single point on the best 

fit line in that case the error the error of the actual model Sr will be 0. So, this means r2 will be 1 

- 0 which is equal to 1. So, this is a good fit. So, this satisfies the condition that we had talked 

about, that you get a good fit in case your error is 0. 

 

Now what happens if it is a bad model? no better than a constant model, what would this mean? 

This means Sr  = St so in this case r2 = 1 - 1 which is 0, so this is a bad model. This condition is 

also satisfying. 
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Now there is another certain point here. so let me add that in general r2will always lie between 0 

and 1. We have seen 2 extremes the reason is St  is always greater than equal to Sr. Now for a 

moment assumes that this is true this would mean that, 

0 ≤  1-
Sr

St
 ≤  1 

Because this tells you 
Sr

St
  is always going to be less than equal to 1. So, this number will always be 

positive and will always be less than equal to 1. 

 

But why is this true? So, I will try to give you an explanation here. you will need to think a little 

bit more about what I am saying, but so why is Sr  ≤  St? Now remember what these 2 quantities 

are, 

St  =  ∑(yi − �̅�)2 

and  

Sr  =  ∑(yi − yî)
2 

which is (yi - (𝑤0  +  𝑤1𝑥𝑖) )2. Now the coefficient is for the best fit, these coefficients 𝑤0 and 𝑤1 

were calculated, so that Sr is minimized. 

 

So, remember we were trying to get the best fit line, so what we were trying to do was to find out 

what 𝑤0  and 𝑤1 will minimize Sr  over all 𝑤0  and 𝑤1. But notice, that this means, if we take the 

special case, where 𝑤0  is �̅� and 𝑤1 is 0. So, if we take one specific line, for example coming here, 



when we try to find out the best fit line, what we are saying is I take this line or this line, or this 

line, or indeed even this line the error of this should be lower than every possible line, because 

that's how we optimize 𝑤0 and 𝑤1. 

 

So, one such line over which this has to be better is the straight line which is horizontal. so same 

thing mathematically this has to be better Sr  has to be better than this line which is 𝑤0 = �̅� and 𝑤1 

= 0, which is this case. This is the same as choosing 𝑤0 = �̅� and 𝑤1 = 0. So, this would mean that 

Sr definitely has to be less than equal to St and these are all positive quantities anyway. 

 

So, I hope this is clear, the formula for r2  =  1- 
Sr

St
 and this is the coefficient of determination. this 

tells you how good or how bad the fit is and we will be reusing this over the next few weeks. 
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So here is this calculation for our example. so just a simple calculation. Again, I will leave the 

calculation to you. I will just slowly show you these are the results of some calculation and cutting 

and pasting it from a excel sheet. Very similar to what we did before, but the calculation works 

like this. you need to first calculate 𝑤0  and 𝑤1  as before. so if you recall from the previous video 

we first cataloged x, this is a summation of x then we catalog y, summation of y, we also needed 

x y and x square okay. 

 

So, these quantities were needed so in order to calculate 𝑤0  and 𝑤1  and that is what we did right 

at the beginning. Now once you do that you have some expressions. So, you actually have numbers 



for 𝑤0  and 𝑤1, it is only after this. So, after this step you then calculate �̂� which I have called y-

fit here for every data point, also calculate �̅�. So once summation of y is here this divided by 6 

which is 13.04 approximately is �̅�, we have calculated it. 

 

Now we calculate y fit what is y-fit? y-fit basically is you go everywhere and calculate �̂� which is 

y-fit as w0  +  w1x. Since we also already know w0 and w1 you can now see. So, you have now 

recalculated w0  +  w1x, so w0  +  w1x is y fit. So, you calculate this for these 6 quantities. Once 

you do that you square it (y - y-fit)2, this is the gap between your prediction and the actual data 

you get this. 

 

And this is the gap between your data and the average data here so you get that too. This quantity 

now is what we called St  and this quantity here is what we call Sr. 
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Now once you calculate that r2 is easy to calculate now, r2  =  1- 
Sr

St
 in this case this comes to 

approximately 0.91 with the numbers here and you can see this is what we would call a good fit. 

Some people prefer above 0.95 but 0.9 and above generally is a decent fit for the data. So, we 

would have to rethink in case let us say it is 0.6, 0.5 or something of that, so we would have to 

think maybe I assumed it is a linear model and it is not really a linear model we will come to such 

discussions later on in the course. 

 



So, what we have done so far is talk about the goodness of fit and how we can calculate it in this 

simple case. there is sort of a formal definition for the coefficient of determination, I will write 

that down. So, this is the proportion of the variance in the dependent variable that can be explained 

by the regression model. So, what I mean by that is, see this original figure there is some noise, 

there is some noise in the data or there are some variants in the data. This data also had some 

variance, when there was really nothing just a constant. 

 

So, if we just put a constant fit here which was just the mean then there is some variance there. 

Now when you put a model, you should invariably see that some proportion of this variance is 

actually reduced. so that will call an explanation. So basically, we are able to explain a decent 

proportion. if all of it was explained 100% of explained by a model, that means we have got a 

really good model but at least we are able to explain 90% of what is happening in this data, which 

we could not have explained if we had just assumed the mean. 

 

So that is what this means physically the proportional or the proportion of the variance in the data, 

that we can basically explain simply by the regression model. Now there are some subtleties here 

about coefficient of determination versus a correlation coefficient we will come to this, when we 

come to the probabilistic portions of this course. For now, I will stop the video here. in the next 

video we will look at quadratic models instead of just linear models. Thank you. 


