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Welcome back, we continue week 12 of inverse methods in heat transfer. This is sort 

of the final video before the summary, and the way ahead video, which will be the next 

one. And I am going to continue this idea of looking at the inverse heat conduction 

problems that we looked at in the last video and also in week 4, the nonlinear problem. 

And formulate this problem for surrogate models, just like we formulated the problem 

for the PINN case. 

 

Again, solving this surrogate model problem by hand would be impossible. And the 

computation part I was going to demonstrate it actually in conjunction with Metropolis-

Hastings. But I would just briefly talk about how we can do this rather than do it. So, I 

will just show the formulation of the problem now and distinguish it with the other 

methods that we have seen so far. 
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Once again, the forward model is something that we obtain from physics and we have 

the differential equation here, okay? So, we have the differential equation here. And 

now once this differential equation is available, we have several options. 

(Refer Slide Time: 01:42) 

 

One option is of course, after you collect the data, this of course is data collection. 

(Refer Slide Time: 01:52) 

 

So once this forward model is obtained, you have two options. You come to the forward 

model and either solve it analytically which if you remember you had 𝜃 = 𝑎(1 − e-bt). 

So, something of this sort or +bt whichever way you want to represent it. And another 

way is to start from here and apply PINN and simply use 𝜃̇  +  𝜆1𝜃 =  𝜆2. 

 

829



Now if we start with the analytical approach, we can use the Gauss-Newton algorithm 

and just do this as a simple nonlinear regression problem. So, this is approach one, 

okay? So, this is the first approach. The second approach is useful if we do not know 

the solution to the differential equation, okay? 

 

So, notice the distinction, you use an analytical solution, if you know that the analytical, 

so you use the analytical solution if you know how to solve the differential equation. 

You use PINN or in many cases, you can sometimes use computation also in case you 

do not know the solution. 

(Refer Slide Time: 03:24) 

 

There is a third approach which is what we call the surrogate model approach. Now 

how does this work? The surrogate model approach is useful in the following cases. We 

do not know the differential equation itself, okay? So, notice even PINN requires you 

to know the differential equation. 

 

The Gauss-Newton approach requires you not only to know the differential equation, 

but actually the all also the actual solution. In that case, this is really effective. If you 

do not know the actual solution, but you know only the differential equation you can 

use PINN. But what happens if you do not know the differential equation at all? 

(Refer Slide Time: 04:18) 
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Then you use the surrogate model approach or PINN and PINN is too expensive, let us 

say which can happen. So, I did not talk about numerical issues with PINN. PINN can 

actually be too expensive or too difficult to apply, which is the same thing. There are 

robustness issues with PINN. Again, this course was too short for me to discuss those 

issues. So, in case these two are the case, this happens and of course we do not know 

analytical solution. 

 

The assumption is if you knew analytical, you should immediately jump there. If you 

do not know that you jump to PINN. So analytical if you do not know that jump to 

PINN. If for some reason PINN is not applicable that is when we move for the surrogate 

approach. Now how is surrogate approach done? So surrogate approach is, we still need 

a forward model. 

(Refer Slide Time: 05:32) 
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Remember, the moment you have a forward model, all you need is some iteration in 

order to get stuff back. You just need some optimization scheme in order to solve the 

problem. In fact, I had given you an example of a surrogate model in the last week also. 

But here is a little bit more about how you can formulate. 

 

So how you formulate with the forward problem is where you either use PINN or you 

use the analytical technique or the surrogate technique. 

(Refer Slide Time: 06:05) 

 

Surrogate technique can work, if you do not even know this, you need something else, 

you need prior data. What is meant by prior data? So now notice, our differential 

equation is 𝜃1 plus this equal to 𝜆2. Now I just said I do not know the differential 

equation. I might not know that, but I might know that 𝜃1, 𝜃2 are parameters. 
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For example, 𝜃2 is some variant Q by MCP, but let us say some normalized heat that 

you added to the system. So, there was the system. We added heat to it and we know 

the heat that we added. So, we just measured what happened and this is the convective 

heat transfer coefficient. If you go back to the notes, you will find that. 

 

So, suppose for some experimental system, so someone somewhere, let us say in the 

United States did some experiment and they measured t1 and T1, t2, T2, but this was for 

some h and some Q, okay? So, they made these measurements. So let me not call it 

subscript just not to confuse you. So, h(1) and Q(1). 

(Refer Slide Time: 07:26) 

 

Then someone somewhere else did some other experiment. Again, they said T1, t2, T2. 

But we can put a superscript from this was experiment 1. This was experiment 2. So, 

h(2) and Q(2), okay? So, this goes on. Then of course, someone else did experiment 3, 

which is, h(3) and Q(3) and then you have this corresponding data set for all three, okay? 

You keep on doing these and over time, now where would this happen practically? 

 

So let us say you have multiple cars, multiple new models of cars and people are doing 

experiments there and you want to figure out how does the air conditioning work within 

the car and how does the temperature change at the place where the driver is sitting. So, 

you can take a temperature measurement between the time that the AC is started and 

till the time it reaches full cooling. 
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So, you can make these measurements and different cars. So, lot of people depending 

on various locations, let us say in India and Ahmedabad, in Mumbai and in Chennai, in 

Delhi etc., people do all these measurements and you have a large data set. So, this is 

the key. 

(Refer Slide Time: 08:48) 

 

You have a very large data set. Now once you have this very large data set, you again 

make a neural network, but this neural network is like this. You say given h and Q here 

is a neural network. Notice the difference between this neural network and the neural 

network that I showed for PINN. So, in PINN the input was x or t and the output was 

let us say the time the temperature here. 

 

Here it is different. So, you give h, Q. You also give the time, okay? So, this is what is 

new. Given these three find out temperature, okay? So, this temperature is now a 

function of h, Q and time. So, this now becomes our forward model. But the forward 

model has other parameters, W, okay. So, what does gradient descent look like here? 

So first the data set. 

 

What you do is take all these data. Notice t1, t2, h(2). So, in this case you would have 

h(2) and Q(2), etc., going and this temperature this time going and that will give you a 

temperature T. Your model will say some other T so you will find the difference. 

(Refer Slide Time: 10:19) 
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So overall, you will simply still have (𝑇̂ − 𝑇)
2
 summed over all the experiments and 

all the individual data over that experiment, you can basically just collect all these 

together and just mix and match them into a single bag, okay. So, once you put all that 

together, you get this model, you get W’s of this model. Once you get W’s of this model, 

then you can do the standard thing. 

(Refer Slide Time: 10:51) 

 

Then this now is the forward model. How is this the forward model? Now notice, 

compare this with the actual analytical forward model which was 𝑇̂ = 𝑎(1 − e-bt). 

Here notice whatever role a and b were playing is the same role that h and Q will be 

playing in our forward model. These are now known. After you have fit, so w is found 

based on prior experiments. 
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By the time it comes to solve the inverse problem, which is for a new given set of data, 

the only unknowns are h and Q. So, the way this works is this. You guess a value of h 

and Q. Based on prior data W has been fixed to be optimal, it predicts a T. This 

obviously will not match the new experiment. So, you predict a 𝑇̂. This will not match 

the new experiment; go back direct h and Q and you keep on doing this. 

 

So, notice the differences between these three approaches. In the first approach, you 

really have no new parameter to discover. You just know that these two were the 

unknown parameters or the free parameters left within the analytical model. You have 

only as many parameters as a unknown physically at that specific inverse problem, 

okay. 

 

In PINN, once again you have these two parameters, but theta is expressed as a neural 

network. So neural network has some whole bunch of parameters W. Those W as well 

as 𝜆1 and 𝜆2 are solved simultaneously during solving the inverse problem. Finally, 

when it comes to the surrogate model, you first solve for W separately, when based on 

past data. 

 

And then when you want these new parameters, let us call them 𝜆1, 𝜆2 or h and Q or 

whatever we want to call them, whatever new pair or a and b, the new parameters that 

you wish to solve a and b are solved during the inverse problems solution just like the 

conventional Gauss-Newton algorithm technique. 

(Refer Slide Time: 13:28) 
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Now finally, I want to point out that surrogate models can be combined with all the 

models we found earlier. So, they can be combined with Gauss-Newton, they can be 

combined with gradient descent. And they can be combined with Markov Chain Monte 

Carlo or MH MCMC because basically at the end of the day, the surrogate model is just 

another analytical model. 

 

In one sense, all three of the approaches that we have discussed, whether it is the 

conventional analytical solution, whether it is physics informed neural networks, or 

whether it is normal neural networks with surrogate models, in all three cases, we are 

assuming some analytical form, okay. How we apply it depends on our specific 

cleverness. 

 

In the case of neural networks with our surrogate models or PINNs, you always have 

to still determine the parameters W. So that is how you tend to do surrogate models. I 

apologize for not showing the code example here, but it became a little bit too 

complicated to demonstrate in this online class. So hopefully, you can try some 

surrogate models yourself in your specific application. 

 

And I will end the course as far as techniques are concerned here. In the next video I 

will simply give you a short summary of the techniques that we discussed and what 

techniques we did not discuss. So, I hope to see you in the next video. Thank you. 
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