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Welcome back. We are in week 12 of inverse methods in heat transfer. In the previous 

few videos, you had seen first some utilizations of neural networks for classification. 

Then we saw neural networks being applied to physics informed neural networks. But 

that was a forward problem. Now what I want to show you in this video is simply a 

formulation for an inverse problem in PINN. I am not going to show you the full 

solution. 

 

I am just going to show you the formulation. I had already talked about this the last 

week. But I want to show you with one specific network, just like we did with the XOR 

gate case, just to get some intuition for what happens. The computation and the coding 

are a little bit messy. If I use a framework, like we did with the Burgers equation code, 

you simply see the framework and you do not understand too much of what goes within. 

So, this is somewhere in between. This is not explicitly a code, but this is just the 

formulation. 

(Refer Slide Time: 01:29) 
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So just for an example, I am going to take an example that we took in week 4 of 

something like heat generation and addition, which is basically convective. So, 

remember we had this case, where we had some body, we have some heater kept in 

there and it is losing some heat to the surroundings, which is like the sink. 

(Refer Slide Time: 01:46) 

 

And we used the lumped-capacitance model here and this was an unsteady problem. 

So, we actually to an unsteady problem. Of course, again, this is an idealization and a 

very simplification. And in fact, we had some exercise problems where at various time 

steps, we measured the temperature and we wanted to find out these parameters, what 

is Q, what is 
hA

mCp
 etc., okay? 
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So given the measurements find Q or h for which we of course require the temperature. 

So, I had, let us assume that this data is given. You are given this measurement of 

temperature and time, okay? 

(Refer Slide Time: 02:25) 

 

Now when we solved it, the way we worked at it was this was the governing differential 

equation. So, this was the ODE which govern the process. So, this basically is what we 

mean by physics of the problem. And this physics itself, we will use this data in order 

to solve the problem. 

(Refer Slide Time: 02:55) 

 

Now recollect that for the conventional solution for the problem, we required this 

analytical expression. So, this is what we required in order to solve the forward model 

PINN, so the forward model based inverse problem. So, this of course came from the 
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physics but we actually had a solution. And where did the solution come from, because 

we had a solution to this ODE. 

 

Now imagine, we do not know how to solve this ODE, which would be the case let us 

say we have something like Burger’s equation, which we just saw or we have a Navier-

Stokes equation. So, the question is, can we solve the inverse problem without explicitly 

solving the ODE? So that is the basic question. And the answer of course, is we can 

solve. 

(Refer Slide Time: 04:12) 

 

So, the solution method is once again assumed that 𝑇̂ is a neural network, some neural 

network. So, it takes in in this case just time, because 𝑇̂ is a function of t, we just take 

in time. Just like the previous case, we put in some neural network here and we get 𝑇̂. 

So, what we are doing is instead of using this expression, we are simply saying ŷ is a 

neural network of x so to speak. 

 

We are using theta of course, instead of t, it does not matter. We use t sorry 𝑇̂ is a 

function of t. Now we have let us say in time we make these measurements. So let us 

say this is the time axis and we make measurements at 5, 6 points or 100 points, it does 

not matter. So, these yellow points now are where we look at our least square function 

in terms of what we called MSEu or I called loss of the BC or the loss of given functions, 

okay? 
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So, function value is given here LT whereas, we can also put a lot of other points in the 

middle. At these points we satisfy the ODE. What was called in the previous code as 

MSEf. So, the total loss is going to be loss due to the experimental or the BC or t plus 

loss due to ODE which is at arbitrary points. So, these points, the yellow points are 

fixed by where we take these measurements. 

 

Whereas the white points are free to do any value in the middle, okay? Now when we 

said the ODE, of course the error is given by this equation, the governing equation. So, 

this governing equation I am going to write as if this is some 𝑦̇ plus some constant equal 

to some other constant 𝜆2, okay? So, our inverse problem becomes suppose I measure 

some 6, 7 values here, can you find out 𝜆1 and 𝜆2. 

 

Now notice the difficulty of the problem. We drew we are not even giving you 𝜆1 and 

𝜆2, but just based on these measurements, you want to find out 𝜆1 and 𝜆2 as well as find 

out y basically in the middle. And that is where the genius of the Raissi and Karniadakis 

approach is. 

(Refer Slide Time: 07:13) 

 

So just to show you what expressions look like, all we are doing here of course is 

assuming now that y is a neural network. So proper acknowledgement these nice notes 

were written by one of the authors of the paper that I had shown you, one of my ex-

PhD students, Vikas Dwivedi has written these nice notes. And you I would welcome 

you to read some of his papers in order to understand the pielm method, which is 

somewhat simplified method. 
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But we are not covering pielm here. We are simply looking at some sort of PINN in 

order to solve this inverse problem. So, this y now here is a neural network. What neural 

network, that is given here. 

(Refer Slide Time: 07:59) 

 

So, we have chosen to show you an example, where it is a simple neural network with 

just one input as t. This of course is the bias unit. You have the hidden layer here with 

three neurons. We have taken an extra bias here too, just to make it look reasonably um 

complicated. So Vikas has chosen to label this as 0. I would have chosen this as 1 and 

2, but he has chosen to label it 0 and 1. 

 

Now let us say this data is available at some 5 points t1, t2, t3, t4, t5 like I said, we can 

draw it let me draw it in a horizontal line. So let us say it is available at these five points 

t1, t2, t3, t4, t5 and in the middle, where I have given nothing okay, so that is where we 

impose, we can actually impose anything we want using the ODE, the governing ODE. 

 

So, at all these other points, these will be ODE points where we can choose as many as 

we want. For example, we saw on the Burgers example that we had taken 30,000. There 

is nothing that stops us from taking as many ODE points as we want, okay. 

(Refer Slide Time: 09:22) 
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So, we come here. That data is basically free, the experimental data is what is restricted, 

okay. So here is the hypothesis function. The hypothesis function as you can see, 

depends on w(0), it depends on b(0), it depends on w(1), it depends on b(1) etc. Now 

what happens if we write it explicitly? Vikas has chosen to use 𝑡𝑎𝑛 ℎ here, just like we 

saw in the Burgers example case, we use tan h here. 

 

So now you can write the output. The output here is, you can see this weight plus this 

weight. So, w1
(0) plus this weight, sorry so w1

(0), w2
(0), w3

(0) are all the biases that 

he has written out. 

(Refer Slide Time: 10:12) 

 

That you can see here. So, w1
(0)t + w2

(0)t + w3
(0)t + biases. So, this function he is 

calling 𝜙. So, this is the standard thing. This of course is z(1). So, z(1)  =  wt + b. So 
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now you can write out y here with respect to the second weight. So, the second weight 

you can see is explicitly written here. 

(Refer Slide Time: 10:43) 

 

So, some other weight multiplied by a plus b. So now you can see this is actually the 

final hypothesis function that we have, complicated looking function. Notice how many 

unknowns are there. This is unknown, this is unknown, this is unknown, this is 

unknown. Now because our governing equation involves 
dy

dt
, we differentiate this with 

respect to t. 

(Refer Slide Time: 11:10) 

 

So, when you differentiate this with respect to t, you get a sec h2 or sec2ℎ, sec h2 term 

here. Why because 𝑡𝑎𝑛 ℎ when differentiated gives sec h2, so that term is there. So, 
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since the notes will be uploaded, for those of you taking course for credit, you can 

actually look through this and look to see if you can identify the differentiation here. 

 

So, you see, 
dy

dt
 can be written as some w times some w and this is now 𝜙′. That is 

because sec h2 is sitting here as 𝜙′. If for example, 𝑦̂ was simply something like w 1 t 

plus b, then, 𝜕𝑦̂, or 
d,𝑦̂ 

dt
 would simply be w1. But it is a more complicated expression. 

So, we have written out the full expression here for whatever corresponds to this. 

 

Obviously, this is going to be messy if I have more units than this, which is why we use 

automatic differentiation as you can see. If I had put 2 layers here, you really would not 

have been able to differentiate this by hand. Okay, if this is the case, then how do we 

proceed further? So, we write 
dy

dt
. Now you write J. 

(Refer Slide Time: 12:43) 

 

So now what is J? J as is shown here is JODE. How did we calculate it? So, JODE, Vikas 

has summed it only from 1 to 5, but you can have different ODE points. So let us say 

you can make these 50 points where you calculate the ODE solution. You can put a lot 

of points here. Whereas the function points are just 5. So, lots of points here, but just 5 

function points and these are the function points here. 

 

Now at these points, we know the values. At this point, we know the differential 

equation. So, we can use the differential equation at these points without bothering 

about the values here, okay? 
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So, this he has written as JR, which is J residue plus J sum function value. Now this is 

not where we stop. Remember we have to do w = w-𝛼
𝜕J

𝜕w
. But 𝜆1 = 𝜆1-𝛼

𝜕J

𝜕𝜆1
 And 𝜆2 =

𝜆2-𝛼
𝜕J

𝜕𝜆2
. So, all these are updates. We give guesses for these all three values, and then 

we update those guesses here. 

(Refer Slide Time: 14:26) 

 

So, notice the W set or the new parameter set is these parameters which are from neural 

networks. And these are the inverse parameters, the parameters that we are solving 

from. So very unique idea to put everything together in the neural network. Already if 

you are solving for let us say 1000 weights, you might as well add a few parameters 

which are very parallel. It is extremely neat idea to do this. 
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So, you can see you require these four from neural networks and these two from the 

inverse parameters. 

(Refer Slide Time: 15:04) 

 

So as is written here, do w = w-𝛼
𝜕J

𝜕w
. These can be calculated simply by backprop, 

okay? So Vikas has written these out explicitly, you can notice the parameters that are 

given here. So, v here is simply the error. I will show you that at the end. 

(Refer Slide Time: 15:29) 
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So, you can see, again you can see the differentiation. I am not going to look at these 

or go through these expressions in detail. I welcome you to go through this. The whole 

point of this is to show how messy this process can get just like we calculated 𝜙', you 

will have a 𝜙'' from a second derivative that we take. And you proceed in the same 

way. So, you calculate for the bias term, you calculate for the next w and you calculate 

this. 

(Refer Slide Time: 15:59) 

 

But most importantly, here are these simple terms, when you take a differentiation with 

respect to 𝜆1, and differentiation with respect to 𝜆2. 

(Refer Slide Time: 16:11) 
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So here, the error can then be put together in this term, t𝜙'. This is just the term that 

comes from the differential equation. We can call this error ODE, okay. So, when you 

put these terms together, every single thing is written explicitly here. 

(Refer Slide Time: 16:38) 

 

So, when you put these terms together, you get expressions for del J with respect to 

each one of these terms, 𝛿1 and 𝛿2. And then all we need to do is simply do gradient 

descent, okay? So, we you can as an exercise maybe if you are really interested solve 

the problem that we solved using Gauss-Newton using this approach. Of course, it is 

really, really messy to find out all these derivatives. 

 

If you know Python or if you know MATLAB and the deep learning toolbox well, you 

can put it so that it differentiates the whole thing automatically. And you can solve this 
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entire problem as an inverse problem. So, what I want to point out here is the complete 

difference in approach between our original approach which used the Gauss-Newton 

nonlinear regression approach and this approach. 

 

The Gauss-Newton approach did not start from the differential equation, but it started 

from the solution of the differential equation. 

,(Refer Slide Time: 17:39) 

 

So, it started from the solution. And since we knew the form, we could basically regress 

to it. 

(Refer Slide Time: 17:53) 

 

Whereas PINN cleverly starts with the differential equation itself, treats that as data. 

And of course, wherever we make measurements are taken as additional data and you 
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regress to it. And indeed, if you solve it this way, you will see that you get the same 

solution as the Gauss-Newton algorithm. 

 

So, I hope at least this one threw a little bit of light on how exactly this problem could 

have been solved using a physics informed neural network approach. In the next video, 

I will similarly give you an overview of how the same idea could have been solved 

using a surrogate model approach. 

 

Again, I am not going to show you a code because we have seen sufficient codes this 

week, and I will just give you an overall overview of how it could have been solved 

using surrogate models, the same nonlinear problem. So, I will see you in the next 

video. Thank you. 
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