
Inverse Methods in Heat Transfer 

Prof. Balaji Srinivasan 

Department of Mechanical Engineering 

Indian Institute of Technology-Madras 

 

Lecture - 64 

Code Walkthrough for PINNs in Burgers Equation 

 

Welcome back. We saw some very simple examples of code demos for neural networks 

in the last couple of videos. What we are going to do is do an actual full code demo of 

a physics informed neural network just as I had described last week. This is taken 

directly from MATLABs examples. 

(Refer Slide Time: 00:41) 

 

So, MATLAB has a PDE toolbox, which is available to you during the duration of this 

course in case you have taken this course for credit. Of course, the original paper from 

which this is, is the Raissi and Karniadakis paper that I had referred to in the last week. 

This is the 2019 paper. So, these people have, these researchers have given their direct 

code on TensorFlow. 

 

The code is the code repository etc., are downloadable from their website. This is of 

course a Python code. But I am going to show the demo since we have been using 

MATLAB throughout, I will just simply show some salient points of this code. Now I 

have mentioned that this is for Burgers equation. So, Burgers equation is a PDE. The 

PDE is like this 
𝜕u

𝜕t
+ u

𝜕u

𝜕x
, so this is a nonlinear equation. 

 

795



This term being nonlinear is equal to some constant times uxx. Those of you who know 

the Navier-Stokes equation, which you should since you are taking this course as 

inverse methods in heat transfer, would know that this is known as some coefficient of 

viscosity or kinematic coefficient kinematic viscosity. In this case, this is sort of a 

pseudo coefficient. It is in case u represents velocity; its units are meter square per 

second. 

 

This basically tells you what the viscous or the diffusion term is in this equation. Now 

typically, Burgers equation, even if you start smooth, can actually lead to, so even if 

you start with an initial condition like this, it can sharpen and become shocks, which is 

why it is sort of a good example for Navier-Stokes especially compressible Navier-

Stokes equations. So, I am taking an example like I said, with some initial conditions 

that look like this, which is directly right out of the paper. So, this is the initial condition. 

(Refer Slide Time: 03:05) 

 

So, when you write the initial condition, you would write 𝑢(𝑥, 0) is some function, let 

us say sin(𝜋𝑥). I will show you the exact function the researchers used and indeed what 

we will be using for our code here. So similarly, we will use some specific value of mu, 

which the researchers used, but that is not sufficient. So, if we simply say that 𝑢(𝑥, 0) 

is given. We want the solution in time, okay so this is time. 

 

So, you need some boundary condition here as well. So, you can use periodic boundary 

conditions or fixed boundary conditions, a lot of possibilities exist. I will show you the 

choice that the researchers made once again. Now these points here are the initial 
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condition points. As I told you during our PINN discussions, these can be fairly 

arbitrary, unlike when we use a finite difference or a finite volume solution. 

 

Now these green points are the boundary condition points. These red points are the 

initial condition points. But that is not sufficient. We need a lot of PDE points. So, what 

does this mean? It means that you want to satisfy all these three in a least square sense. 

So let us say we arbitrarily put some points and we will call this PDE points. So, what 

is the idea? We simply say u I know is a function of x and t. 

 

Instead of that, I represent this diagrammatically as x t a neural network. Now this is 

not one single hidden layer, but here is my output u or �̂�. So, we are going to take if I 

remember right, I will show you this in the code, we are going to take about nine layers. 

So, you are going to have nine hidden layers here and each one is going to have around 

20 neurons, okay? So, this is what means. 

 

So, we have 20 neurons each or 20 to 25 neurons in each one of these layers. All this 

means is you have is a fairly complex function, which has a whole bunch of basically 

unknowns or a whole bunch of parameters. How many? So, you can see that every two 

layers, we are going to have approximately 400. 400 plus 400 multiplied by 8. So, you 

are going to have approximately 3000 parameters. 

 

This is very few parameters honestly for a typical large neural network, not for a PINN 

network, but for a large neural network, these number of parameters are not very large. 

So, this is actually a reasonably sized neural network, just 20 neurons each with 9 layers, 

okay. So, once we have these what happens? So, you forward propagate through this, 

for some given set of parameters. 

 

You should remember this from our, so for a guess of w the forward propagate you get 

u hat. But not only do you get u hat, you can actually estimate 
𝜕𝑢

𝜕t
,

𝜕𝑢

𝜕x
. You can also 

estimate 
𝜕2𝑢

𝜕x2
. How do we do that? Once I know the function u, obviously, I can find out 

what 
𝜕𝑢

𝜕t
,

𝜕𝑢

𝜕x
, 

𝜕2𝑢

𝜕x2 is? 
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And the trick to this is to use auto grad or automatic differentiation. And automatically 

this is basically just like we achieve 
𝜕J

𝜕w
 you can achieve  

𝜕𝑢

𝜕x
 by a simple calculation 

through backprop, okay? But this backprop has a different purpose from the backprop 

that we usually use in neural networks that is to update the weights. This is simply to 

calculate what these terms are. So, once you do this, then you have loss terms. 

(Refer Slide Time: 07:32) 

 

So, loss PDE (LPDE) of course is, at every PDE point, you go here and calculate these 

three terms and see. Thus, I am going to call this for simplicity make up ut, ux, uxx. So, 

I am going to simply check is (ut̂ + 𝑢ux̂̂ − 𝔘uxx̂)
2
, is this term 0 or not? Typically, 

obviously since we are randomly guessing at this point it is not going to be 0. So, u 

square this. 

 

Now at the BC points, you go and check at the BC points, you check is u satisfying 

whatever the u boundary condition is. Similarly at the initial condition points you check 

is u satisfying the whatever my initial condition set, and we obviously have to square 

these, okay? 

(Refer Slide Time: 08:42) 
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Then we can say that the total loss is let us call it, 

Ltot = LPDE + LBC + LIC 

So, this is the loss. Then you find out 
𝜕L

𝜕w
, okay? Calculate that, then w = w-𝛼

𝜕L

𝜕w
. The 

code that I am going to show you is the slightly different optimization scheme. It is still 

based on gradient descent, but it uses something called ADAM. ADAM is simply a 

different optimization scheme. 

 

So, ADAM is an optimization scheme. That is a variant of gradient descent, okay? So, 

I will now show you the code and you can see the results within MATLAB. So, if you 

wait for a few seconds, I will show you the code. 

(Refer Slide Time: 09:37) 
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So, this is the example code which exists. So, I am not going to share this code online. 

You can basically go to MATLAB and look for this particular example, which is called 

the train physics informed neural networks example. So, I would request you to search 

that. Again, this will be available only during the duration of the course. The purpose 

of this code of course, is to show you how such codes look in practice. 

 

So let us look at this. We have these three things. We have the PDE, which will bring 

us the PDE loss. You can see ut + 𝑢ux equal to this term minus 0.01 by pi this is new. 

0.01 by 𝜋 is just the viscosity coefficient. Now you can see that the initial condition 

was not sin(𝜋𝑥) as I had said, but it was -sin(𝜋𝑥) just to get a particular waveform 

which goes positive and then it goes negative as x becomes positive here, okay? 

 

Now the boundary condition you can see here is that on the left and on the right, they 

have basically ensured that the velocity stays 0 if u is the velocity, okay? 

(Refer Slide Time: 11:03) 

 

So, you can see that we train the model by for a given input x t, if it lies at the boundary, 

you try to satisfy the boundary condition. If it lies at the initial condition you try to 

satisfy the initial condition and everywhere else you basically satisfy the PDE. 

(Refer Slide Time: 11:19) 
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You do not require to collect data in advance. This this is an important point, okay. So, 

you do not require to collect data in advance, basically because the data is this. The only 

other data you will need is these points, initial and boundary conditions. But otherwise, 

you have PDE data, because we know the PDE is satisfied at every single point in the 

bundle. 

 

So even though this says generating generate training data, all we are doing is collecting 

a set of points where we are going to impose the PDE, okay? So, you see that the 

boundary conditions at left and at the right, the green points that I showed you earlier 

in the video, these are enforced by keeping 25 equally spaced points on the left and on 

the right, okay? So now they are just collecting these. 

 

This is the left boundary condition; this is the right boundary condition. Similarly, these 

are the temporal boundary conditions. Temporal boundary conditions meaning initial 

condition and the final condition. I did not draw this, this is at the top just like I had 

some condition at the bottom, they had put some other condition at the top, okay? So, 

the left BC is set to be 0, because that is what it is set to be here. 

 

That is why this says u 0 BC equal to zeros. Similarly, on the right also you have zeros. 

So, rest of it are just MATLAB details that I will lead to. 

(Refer Slide Time: 12:50) 
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Initial conditions are 50 points, as I said here. So, you can see this. And the initial 

conditions are now set to -sin(𝜋𝑥), okay? So, 50 points here, 25 points each on the left 

and on the right, okay? 

(Refer Slide Time: 13:07) 

 

So, this now has been sent. Now these points are basically the PDE points that I talked 

about, okay? So, these are the PDE points. Those randomly spurned white points that I 

have shown in the video earlier, are basically these PDE points. And these are 10,000 

points that are put in the entire domain, okay? 

 

So, we have just randomly chosen, there is something called a sobolset. We do not care 

about that. So, once we put that we have got a whole bunch of points now. So, ds is the 
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data set, which is the bunch of points where you are going to impose. These are the x's 

and t's where we are going to impose the PDE. 

(Refer Slide Time: 13:50) 

 

So now here it is. As I said, I seem to have remembered correctly, we have 9 fully 

connected operations with 20 hidden neurons each. So, this will be 3000 plus 

parameters, okay? So, you have x and t at the input, and you have just one single output 

on the outside which is u, okay? 

(Refer Slide Time: 14:13) 

 

So here you have number of layers is 9. Number of neurons is 20. So, I am going to 

skip this because now you can see weights, biases, etc. Defined here, there is a certain 

type of initialization. So, these are random initializations that we are giving for weights 

solved k initialization, okay? 
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(Refer Slide Time: 14:32) 

 

This exactly is just a neural network definition. Now when I showed you the XOR 

example, I was going step by step. And I think I hope at least that that was more readable 

than this. But if you know MATLAB or indeed if you go to Python and use one of these 

frameworks, you will see that that is reasonably understandable once you actually go 

ahead and implement a few codes, okay? 

(Refer Slide Time: 15:00) 

 

So here is simply some detail that shows you that a lot of fully connected layers are 

there and you have lots of weights in the middle, okay. 

(Refer Slide Time: 15:11) 
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So now here is a model, so you have a model function. 

(Refer Slide Time: 15:16) 

 

You have a model loss function. Notice here, the model loss function is simply this 

MSEf means the same as what I called LPDE, the PDE loss. And MSEu is basically all 

the terms of this sort where you have error from the boundary condition or the initial 

condition or if you have some data points also in the middle, you can add those as well. 

And here are of course, the PDE loss functions. 

(Refer Slide Time: 15:48) 
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So, you can see here this is basically assuming some parameters are known. So, 

parameters here are just the w's. So, for a given x and t, you can do a forward prop, and 

that gives you u. That is what used to be our y hat. You can also calculate gradients, 

okay? So basically, ignore all this term, but basically you can calculate gradients, can 

calculate x gradient, you can calculate t gradient and you can also calculate the second 

gradient uxx. 

 

And here it is, here is our simple loss. Our simple loss is ut + 𝑢ux - 𝜇uxx. This should 

be square and that sits in here, okay? We say that it has to be squared by using MSE. 

Similarly, initial and boundary conditions are put together and predicted here in just the 

single term loss u. 

 

And we say that collect all these at all these points x0, t0, which puts together all the 

points the initial condition boundary condition all those points and simply says, 

whatever prediction you made here, compare it with what I wanted the value to be and 

just add the mean square error and that will see the loss. And at this point, you basically 

calculate the gradient. 

(Refer Slide Time: 17:09) 
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This here is the forward model. Instead of using the sigmoid you can see that they have 

used the 𝑡𝑎𝑛 ℎ. And that it is a fully connected layer in middle of every 𝑡𝑎𝑛 ℎ. 𝑇𝑎𝑛 ℎ 

as I had told you in the nonlinearity chapter in the last week, that 𝑡𝑎𝑛 ℎ tends to work 

better than sigmoid. A 𝑡𝑎𝑛 ℎ works better because its derivative at 0 is 1 whereas the 

sigmoid derivative is 0.25. 

 

And that tends to work worse as it goes through multiple layers. I had also told you that 

ReLU works even better. But the reason we did not use ReLU here is this term. 

(Refer Slide Time: 17:52) 

 

The termuxx, since ReLU is a linear function, uxx will always turn to 0. So, if you have 

a uxx term, you cannot use ReLU with any physics informed neural networks because 
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we want the second derivative to be nonzero. Obviously, if we give a model which does 

not give a second derivative at all, you are going to get uxx is 0 by default everywhere. 

(Refer Slide Time: 18:20) 

 

So, once you do this, you have just a simple step here. You can see this number of 

epochs, etc. You go they also have a more fancy way of running this where the learning 

rate is actually updated. This is another variant of gradient descent. And you can see 

this term saying ADAM update. So, as I had told you, this is a variant once again of 

gradient descent. ADAM is an optimization. 

 

So, you can see an ADAM solver etc. All the other terms are just in order to make this 

whole thing run, okay? 

(Refer Slide Time: 18:58) 
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And once we do that, you can just like the last time when we checked y versus y hat, 

you can now evaluate model accuracy if it runs fully. So, what I will show you now is 

we would not have the time to go through the full run, obviously this takes time. 

(Refer Slide Time: 19:13) 

 

The references are given here at the bottom, okay? So this is the first paper is the Raissi 

and  Karniadakis paper. Perdikaris is another professor at Penn State who works a lot 

on physics informed neural networks. So let me just run this quickly. And I want to 

show you just how these proceeds. We cannot show you the end. I will show you the 

end result on the MATLAB website. So hopefully this we see some results here. 

(Refer Slide Time: 19:49) 

 

So yes, you can now see the number of epochs and you can see it updating, okay? So 

you can see that the loss updates itself and generally tends to go down. You will see 
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some spike ups sometime in the middle. So as the loss goes down, this is why we 

typically plot the loss versus the number of iterations just to see that the whole thing is 

behaving as expected. So once the loss comes to one standard value, we say that the 

loss has saturated. 

 

So, we have now about 75, 76 iterations here. I will right now stop it and show you the 

results on a different thing where on MATLAB's official website. 

(Refer Slide Time: 20:37) 

 

So, you can go to this website written here. If you go to the deep learning toolbox, and 

then look at solve partial differential equations using deep learning, this is actually 

available within MATLAB's website. If you say open in MATLAB online and during, 

in case you are taking this course for credit, during the course of this course or during 

the course of being enrolled in this NPTEL course, you will be able to open this in 

MATLAB and actually run it and you can check how it works. So, the same code here, 

I just want to show you the final results. 

(Refer Slide Time: 21:18) 
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You can see here that this ran for 3000 epochs, because that was what the number of 

epochs was defined to be. You can see here number of epochs is 3000. Yeah, this is 

important. I had not mentioned it while showing you the code earlier that the mini batch 

size is 1000. Now what does mini batch size mean? Remember that we had a mini batch 

gradient descent, batch gradient descent and gradient descent. 

 

So, we had 10,000 points here, but only 1000 of them will be taken each time for 

updating the loss function. That is what mini batch size of 1000 means here, okay. So, 

we run that. And you can see that after some time, the loss basically gets approximately 

to 0, at least in comparison to the original thing. You can see losses 10 power -5, okay? 

So, you can also see the final predictions. 

(Refer Slide Time: 22:15) 
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The red lines here are the actual Ground Truth, which we never looked at by the way. 

Please remember that, in this case the way PINN works, we never actually looked at 

the Ground Truth, the red truth, because we were only looking at the derivatives. So 

that is the clever part. We did not impose Ground Truth on u, but Ground Truth on 

derivatives of u. So, we found out the relationship between derivatives of u. 

 

You can see that the prediction is pretty good. So, in this video, you basically saw that 

PINNs can work pretty well even on a seemingly reasonably complex problem provided 

you give sufficient data and you give sufficient compute on this data. So, I will see you 

in the next video. 
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