Inverse Methods in Heat Transfer
Prof. Balaji Srinivasan
Department of Mechanical Engineering
Indian Institute of Technology-Madras

Lecture - 64
Code Walkthrough for PINNs in Burgers Equation

Welcome back. We saw some very simple examples of code demos for neural networks
in the last couple of videos. What we are going to do is do an actual full code demo of
a physics informed neural network just as | had described last week. This is taken
directly from MATLABs examples.

(Refer Slide Time: 00:41)

Code Demo - '_PIN_N{ for Bumes E'f'an

WATLAR 7 POE Tool box,

> Raissi o . al. (208) = Toudlns +Pyon

W4 un :’i)um

ot o

m Costf of Hscmikq_ [M‘/;l

So, MATLAB has a PDE toolbox, which is available to you during the duration of this
course in case you have taken this course for credit. Of course, the original paper from
which this is, is the Raissi and Karniadakis paper that | had referred to in the last week.
This is the 2019 paper. So, these people have, these researchers have given their direct

code on TensorFlow.

The code is the code repository etc., are downloadable from their website. This is of
course a Python code. But | am going to show the demo since we have been using
MATLAB throughout, I will just simply show some salient points of this code. Now |

have mentioned that this is for Burgers equation. So, Burgers equation is a PDE. The

PDE is like this 66—1: + uZ—z, so this is a nonlinear equation.

795

This term being nonlinear is equal to some constant times u,,. Those of you who know
the Navier-Stokes equation, which you should since you are taking this course as
inverse methods in heat transfer, would know that this is known as some coefficient of
viscosity or kinematic coefficient kinematic viscosity. In this case, this is sort of a
pseudo coefficient. It is in case u represents velocity; its units are meter square per

second.

This basically tells you what the viscous or the diffusion term is in this equation. Now
typically, Burgers equation, even if you start smooth, can actually lead to, so even if
you start with an initial condition like this, it can sharpen and become shocks, which is
why it is sort of a good example for Navier-Stokes especially compressible Navier-
Stokes equations. So, | am taking an example like I said, with some initial conditions
that look like this, which is directly right out of the paper. So, this is the initial condition.
(Refer Slide Time: 03:05)

Ain (1)

Ne
LR ,~ BC peint

So, when you write the initial condition, you would write u(x, 0) is some function, let

us say sin(mx). I will show you the exact function the researchers used and indeed what
we will be using for our code here. So similarly, we will use some specific value of mu,
which the researchers used, but that is not sufficient. So, if we simply say that u(x, 0)

is given. We want the solution in time, okay so this is time.
So, you need some boundary condition here as well. So, you can use periodic boundary

conditions or fixed boundary conditions, a lot of possibilities exist. | will show you the
choice that the researchers made once again. Now these points here are the initial

796

condition points. As | told you during our PINN discussions, these can be fairly

arbitrary, unlike when we use a finite difference or a finite volume solution.

Now these green points are the boundary condition points. These red points are the
initial condition points. But that is not sufficient. We need a lot of PDE points. So, what
does this mean? It means that you want to satisfy all these three in a least square sense.
So let us say we arbitrarily put some points and we will call this PDE points. So, what
is the idea? We simply say u | know is a function of x and t.

Instead of that, | represent this diagrammatically as x t a neural network. Now this is
not one single hidden layer, but here is my output u or @i. So, we are going to take if I
remember right, I will show you this in the code, we are going to take about nine layers.
So, you are going to have nine hidden layers here and each one is going to have around

20 neurons, okay? So, this is what means.

So, we have 20 neurons each or 20 to 25 neurons in each one of these layers. All this
means is you have is a fairly complex function, which has a whole bunch of basically
unknowns or a whole bunch of parameters. How many? So, you can see that every two
layers, we are going to have approximately 400. 400 plus 400 multiplied by 8. So, you
are going to have approximately 3000 parameters.

This is very few parameters honestly for a typical large neural network, not for a PINN
network, but for a large neural network, these number of parameters are not very large.
So, thisis actually a reasonably sized neural network, just 20 neurons each with 9 layers,
okay. So, once we have these what happens? So, you forward propagate through this,

for some given set of parameters.

You should remember this from our, so for a guess of w the forward propagate you get

u hat. But not only do you get u hat, you can actually estimate %,% You can also

2
estimate ZTZ' How do we do that? Once | know the function u, obviously, | can find out

ou ou 921 .
— = 2 g?
what o 3 1S

797

And the trick to this is to use auto grad or automatic differentiation. And automatically
this is basically just like we achieve ;—Jv you can achieve g—z by a simple calculation

through backprop, okay? But this backprop has a different purpose from the backprop
that we usually use in neural networks that is to update the weights. This is simply to
calculate what these terms are. So, once you do this, then you have loss terms.

(Refer Slide Time: 07:32)

So, loss PDE (Lrpe) of course is, at every PDE point, you go here and calculate these

three terms and see. Thus, | am going to call this for simplicity make up uy, uy, . SO,
| am going to simply check is (Gt + uty — uﬁ;()z, is this term 0 or not? Typically,
obviously since we are randomly guessing at this point it is not going to be 0. So, u

square this.

Now at the BC points, you go and check at the BC points, you check is u satisfying
whatever the u boundary condition is. Similarly at the initial condition points you check
is u satisfying the whatever my initial condition set, and we obviously have to square
these, okay?

(Refer Slide Time: 08:42)

798

Then we can say that the total loss is let us call it,
Ltot = Lppe + Lpc + Lic
So, this is the loss. Then you find out :TLV’ okay? Calculate that, then w = w-a ZTLV' The

code that I am going to show you is the slightly different optimization scheme. It is still
based on gradient descent, but it uses something called ADAM. ADAM is simply a
different optimization scheme.

So, ADAM is an optimization scheme. That is a variant of gradient descent, okay? So,
I will now show you the code and you can see the results within MATLAB. So, if you
wait for a few seconds, | will show you the code.

(Refer Slide Time: 09:37)

Nics, and irathc fiows

von the computational domain| -1, 1] [0, 1], his exsmpile uses a physics informed noural network (PINN) [1)

ayer percepiron neural network that takes samplos (+ as nput, whore + ¢ Ll sthe

riablo, and 1 € [0, 1] is the tme variable, and robums (. 1), wheeo u is the sokston of the Burger's

with) = ~inlxx)as 1he niial condnen, and wic = ~1,1) =0 and w1) = () &3 the boundary

Tho axamplo traing the madel by enlorory (x,1), the output of the network u{x, 1) il the

Burger's equabon, the

Traming this model does not require collecting data in advance, You can generale dala using the definlion of the

PDE and tho constraints

799

So, this is the example code which exists. So, I am not going to share this code online.
You can basically go to MATLAB and look for this particular example, which is called
the train physics informed neural networks example. So, | would request you to search
that. Again, this will be available only during the duration of the course. The purpose

of this code of course, is to show you how such codes look in practice.

So let us look at this. We have these three things. We have the PDE, which will bring
us the PDE loss. You can see u; + uuy equal to this term minus 0.01 by pi this is new.
0.01 by = is just the viscosity coefficient. Now you can see that the initial condition
was not sin(mx) as | had said, but it was -sin(mx) just to get a particular waveform

which goes positive and then it goes negative as x becomes positive here, okay?

Now the boundary condition you can see here is that on the left and on the right, they
have basically ensured that the velocity stays 0 if u is the velocity, okay?
(Refer Slide Time: 11:03)

§IR LA 3 O | 1D 0 A G L B A DU (UG) U e I U S0 UY appaieu

mathemascs. In particular, fluid mechanics, Nonlinedr ACOUSSCS, Gas dynamics, and raffio flows.

Gaven the computational domain | =1, 1] x [0, |], ths oxampio uses a physics informed noural network (PINN) (1)
and rans & multlayer Dercepiron Newryl network that 1akes samplos (1. 7) a8 nput, where 1 € I.1) sthe
spatial variable, and 1 @ [0, 1] is the tme variable, and retums «(x, 1), where U is the solution of the Burger's
equaton

N b 00) 'y

@ & o x o
With Wl 1,1 = 0) = <sinlex)as the intial condtion, and wlx = <1,7) = 0 and s x = |, 1) = () as the bouncary
condiions.
The exarmplo traing the model by enforcing that given an leput (£, 1), the output of the network o £, 1) halils the

Burgor's equation, the boundary condtions, and the intial condition

Training ths model does not require collecting data in acvance. You can generate data using the definiion of the
PDE and the constrants.

Generate Training Data

Training the model requires a data set of collocation points that enforce the boundary conaiions, enforce the

wbial mrendmne A b P D s -

So, you can see that we train the model by for a given input x t, if it lies at the boundary,
you try to satisfy the boundary condition. If it lies at the initial condition you try to
satisfy the initial condition and everywhere else you basically satisfy the PDE.

(Refer Slide Time: 11:19)

800

‘ i

of the PDE and the constraints

Generate Training Data
Traning the model requres a data set of collocation points that antorce the boundary condsions, enforce the
rétial concitions, and AUl the Burger's equation

Seloct 25 squally spaced me ponts 10 enlorce each of the boundary conGitions o x LN=0and
yu)

nusBoundaryConditionPoints = [25 25];

X0BC1 = ~lsones(1,nuaBoundaryConditionPoints(l));
x8BC2 = ones(1,nusBoundaryConditionPoints(2));

tOBC1 = linspace(®,1, nusBoundaryConditionPoints{1));
0BC2 = Linspace(®,1, nusBoundaryConditlonPoints(2));

udBC1 = zeros(1,nusBoundaryConditionPolnts(l));
UOBC2 = zeros(l,numBoundaryConditionPoints(2));

Select 50 oqually spaced spatial points 10 erdorce the Nl condtion iy, | = 0) =~y

You do not require to collect data in advance. This this is an important point, okay. So,
you do not require to collect data in advance, basically because the data is this. The only
other data you will need is these points, initial and boundary conditions. But otherwise,
you have PDE data, because we know the PDE is satisfied at every single point in the
bundle.

So even though this says generating generate training data, all we are doing is collecting
a set of points where we are going to impose the PDE, okay? So, you see that the
boundary conditions at left and at the right, the green points that | showed you earlier
in the video, these are enforced by keeping 25 equally spaced points on the left and on
the right, okay? So now they are just collecting these.

This is the left boundary condition; this is the right boundary condition. Similarly, these
are the temporal boundary conditions. Temporal boundary conditions meaning initial
condition and the final condition. | did not draw this, this is at the top just like I had
some condition at the bottom, they had put some other condition at the top, okay? So,

the left BC is set to be 0, because that is what it is set to be here.
That is why this says u 0 BC equal to zeros. Similarly, on the right also you have zeros.

So, rest of it are just MATLAB details that I will lead to.
(Refer Slide Time: 12:50)

801

TODLL = LiNSPACE(Y, I, NUSBOURDArYLONGIT10APOINTS (1))}
tOBC2 = linspace(@,1,numBoundaryConditionPoints(2));

UOBC1 = zeros(1,numBoundaryConditionPoints(l));
u®BC2 = zeros(1,numBoundaryConditionPointsi(2));

Seloct 50 oqualy spaced spatial pomis 10 enforos the ntial condition wx, 1 =) = ~yin(ex)
nualnitialConditionPoints = 50;
x0IC » Linspace(~1,1,mumInitialConditionPoints);
tOIC = erosil,numlnitialConditionPoints);
uelC = ~sin(piexplC);
Geoup togother the data for intial and bourdary conditons,
1 X0 = [xOIC x0BC1 x08C2];
17 T = [tOIC tOBC1 tRBC2];
18 U0 = [uRIC ulBCl vRBC2);

Select 10,000 points 10 endoroe the output of the network 10 AR he Burger's equation

nualnternalCollocat ionPoints = 10000;

R

Initial conditions are 50 points, as | said here. So, you can see this. And the initial
conditions are now set to -sin(mx), okay? So, 50 points here, 25 points each on the left
and on the right, okay?

(Refer Slide Time: 13:07)

15 uRIC = ~sin(piexPIC);

Group togother the data for intial and boundary conditons.
16 X0 = [x@IC x0BC1 x@8C2];
17 ™0 = [tOIC toBCl t0BC2);
18 U9 = [ulIC ueBC1 vOBC2];
Seloct 10,000 poiis 19 erdorce the output of the network 1o fulfil the Burger's equation -~ PDE points

19 nualnternalCollocationPoints = 10000;

pointSet = sobolset(2);
points = net(pointSet,nunlnternalCollocationPoints);

1 dataX = 2epoints(:,1)-1;
datal = points(:,2);

Create an amay datastoes contanng e Faining data

ds = arrayDatastore([dataX dataTl);

Nafina Naan | asrmina Madal

So, this now has been sent. Now these points are basically the PDE points that | talked
about, okay? So, these are the PDE points. Those randomly spurned white points that |
have shown in the video earlier, are basically these PDE points. And these are 10,000

points that are put in the entire domain, okay?

So, we have just randomly chosen, there is something called a sobolset. We do not care

about that. So, once we put that we have got a whole bunch of points now. So, ds is the

802

data set, which is the bunch of points where you are going to impose. These are the X's
and t's where we are going to impose the PDE.
(Refer Slide Time: 13:50)

$ ~ ” — T T .
o e e e B RN RSN § o Qi
v ; L L T ——————

Croate an armay datasiors containng the Waining data

ds = arrayDatastore([dataX dataT)); | s

Define Deep Learning Model

Defie 0 multlayer porceptron architecture with B Iully connect cporations with 20 hidden neurons, The fest ully
connect operation has two input channels comresponding 10 the nputs « and 1. The last Aully connoct aperation
has 0ne OURPUt WX, 1)

Define and Initialize Model Parameters

Define the parametors lor each of the operations and include tham n a struct. Use the format
paraseters,.OperationName . ParaneterName where paraseters & the struct, Operat ionName is the
name of he operation (for example “Ic1”) and Paranete rNase is the name of the parameter (Yor example
“Weghts)

Spocily the numbor of layers and the number of neurons 1o oach layer

nualayers = 9;
nusNeurons = 20;

So now here it is. As | said, | seem to have remembered correctly, we have 9 fully
connected operations with 20 hidden neurons each. So, this will be 3000 plus
parameters, okay? So, you have x and t at the input, and you have just one single output
on the outside which is u, okay?

(Refer Slide Time: 14:13)

name of e oparation (for exampie "1c1%) and Parasete riane is the name of the paramater (for exampio

“Weghts")
Specily the number of layers and ihe number of neurons for each layer

nuslayers = 9;
nusNeurons = 20;

ntiaize o paramedsers for Mo Sest Iully connect operation. The fiest Rully coNNect operaiion has two input
channols

parameters = struct;
sz = [nusNeurons 2);
32 parameters.fcl.Weights = initializeHe(sz,2);
33 parameters.fcl.Biasl & InitializeZeros! [nusNeurons 1]);

Inliaize Me parametans for sach of the remaining imermediate Ay connect operations.

34 for layerNumber=2:nualayers-1
name = “fc"slayerNuaber;

37 sz » [nusNeurons nusheurons];

So here you have number of layers is 9. Number of neurons is 20. So, | am going to
skip this because now you can see weights, biases, etc. Defined here, there is a certain
type of initialization. So, these are random initializations that we are giving for weights

solved K initialization, okay?

803

(Refer Slide Time: 14:32)

B 0 - e e .

o g,

- 51 ¢ st + A » Gy & SRS » Susmuis & S0 6 s + Tocadhveebdtremiimagiunent oy Resue .
parameters.fcl. Neights = initializeMe(sz,2);
parameters.fcl.Bias = initializeZeros([nusNeurons 1));

Ntaize Mo parameterns for each of the remansng miaemadiale fuly COnNC OPOrations.

¢ for layerNumber=2:nualayers-1
name = “fc'elayerNuaber;

$2 = [nusNeurons nusNeurons);

nurln = ausNeurons;

paraneters. (name) Weights = initializede(sz, nuslin);

paraseters. (nase) .Bias = initializeZeros([nusMeurons 1]);
end

Intialze the parameders for the Snal fully connect operasion. The fnal fully connect operation has one output
channel
sz = (1 nusMeurons);
nualn = nuaNeurons;
44 parometers,(“fc* + nualayers).Weights = initializeNe(sz, nualn);
45 parameters.(“fc” + nuslayers).Bias = initializeZeros((l 1]);

Viaw (he network parameters

This exactly is just a neural network definition. Now when | showed you the XOR
example, I was going step by step. And I think I hope at least that that was more readable
than this. But if you know MATLAB or indeed if you go to Python and use one of these
frameworks, you will see that that is reasonably understandable once you actually go
ahead and implement a few codes, okay?

(Refer Slide Time: 15:00)

. . v B . . . - - - A
. R
channel

sz = [1 nusiNeurons):
nualn = nusNeurons;
4 parameters.(“fc” + nusLayers).Weights = initializeMe(sz,numin);
4 parameters.(“fc” + nuslayers).Bias = initializeZeros((1 1)); |
View t1he network paramoten.

parameters

paraseters «

View the paramaeters of the Srst fully connocted Myer
a1 naranaters. el

So here is simply some detail that shows you that a lot of fully connected layers are
there and you have lots of weights in the middle, okay.
(Refer Slide Time: 15:11)

804

. 15 1 Wws ¢ Ak + Do + WAL + Brumn b RIS + o ¢ Tt et
e ———
ans =

Weights: [20x2 dlarrayl
Blas: [20=1 dlarray]

Define Model and Model Loss Functions

Cronte the function jeode |, ksted In the Mode! Function section at the end of the example, that computes the
outputs of the deep learming model. The function mode L takes a3 input the model parameters and the network
Inputs, and returns the moded output.

Create the function mode 1Loss, isted in the Mode! Loss Function secton at the end of he example, that takes -
&5 mput the mode! parameters, the network inputs. and the nhial and boundary conditons, and retuns the loss
and the gradients of the J0ss with respect 10 he learnable parameters.

Specify Training Options

Train the modol for 3000 epochs with a mink-baich size of 1000

48 nunEpochs = 3000;
49 miniBatchSize = 1000;

To tran 0n a GPU # one is available, specify the execution envicomment "auto”. Using a GPU requires Parallel

So now here is a model, so you have a model function.
(Refer Slide Time: 15:16)

[E—rpe———

Model Loss Function

The model is trained Dy enforcing that given an input (1. /) the output of the nedwork i «, () Wllils the Burger's
equaton, the boundary conditions, and the initial condition. In particular, two quaniies contribute 10 the loss 1o
be mewmized

loss = MSE/+ MSE,}
N X,
where MSE; & - T 16,0 and MSE, = o T ot £) =T
Mere, In'_.:.)i' correspond 1o collocation points 0n the boundary of e compulational doman and account for

both boundary and infal condition. (', 7 0" are pomts i the nendor of the domain

o Fu

Calculating MSE, requiros the derivatives x9r'
o 0" gy

of the output » of the model

The funcson mode LLOSS takes as nput, the model pacameters paraseters, the network nputs X and T, the
invtial and boundary conditons X0, T@, and U, and retums ihe 10ss and the gracdkents of (e loss with respect 10
1 leamablo parameters

m function [loss,gradients] = modelloss(paraseters, X, T,X0,70,U0)
172

—— I

You have a model loss function. Notice here, the model loss function is simply this
MSE+ means the same as what | called Leog, the PDE loss. And MSE, is basically all
the terms of this sort where you have error from the boundary condition or the initial
condition or if you have some data points also in the middle, you can add those as well.
And here are of course, the PDE loss functions.

(Refer Slide Time: 15:48)

805

function [loss,gradients) mode lLossiparaneters, X, 1, X0,70,00
U » modeliparameters, X, T);

gradientsU = dlgradient(suml(U, 1), {X, 7}, EnableNigherDerivativesstrue) ;
Ux = gradientsi{l};
Ut = gradientsi{2};

) Ale $eCo der derivativ vi spec
Uxx = digradient{sumilx, “a) X, EnableHigherDerivativesstrue);
f Ut o Uoollx = (0.01.7p1) . sUxx;

zeroTarget » zeros(size(f), ke, 1);

loss? = mself, zeroTarget);

Ca ste Lo atfore tial
URPred = model{parameters, X9, T0);
lossl = ase(UOPred, UQ);

So, you can see here this is basically assuming some parameters are known. So,
parameters here are just the w's. So, for a given x and t, you can do a forward prop, and
that gives you u. That is what used to be our y hat. You can also calculate gradients,
okay? So basically, ignore all this term, but basically you can calculate gradients, can
calculate x gradient, you can calculate t gradient and you can also calculate the second

gradient uy.

And here it is, here is our simple loss. Our simple loss is u; + uuy - pu,,. This should
be square and that sits in here, okay? We say that it has to be squared by using MSE.
Similarly, initial and boundary conditions are put together and predicted here in just the

single term loss u.

And we say that collect all these at all these points x,, t,, which puts together all the
points the initial condition boundary condition all those points and simply says,
whatever prediction you made here, compare it with what | wanted the value to be and
just add the mean square error and that will see the loss. And at this point, you basically
calculate the gradient.

(Refer Slide Time: 17:09)

806

- R AR U

function U = model(paraseters,X,T)

XY = [X;7];
nuslLayers = numel(fieldnames(parameters));

h First fully connect operation
welights = parameters, fcl. Weights;
bias = parameters.fcl.Bias;

90
81
92
0

204
05
ot
)
08 U = fullyconnect(XT,weights,blas);
]

o A tank and fully connect operations for resaining layers
1 for 1=2:nuslayers
12 name » "¢ .1
21
N4 U = tash(u);
1 welghts = paraseters, (name).Weights;

bias = parameters,(name).Blas;
U » fullyconnect(U, weights, blas):
ond

anct

This here is the forward model. Instead of using the sigmoid you can see that they have
used the tan h. And that it is a fully connected layer in middle of every tan h. Tan h
as | had told you in the nonlinearity chapter in the last week, that tan h tends to work

better than sigmoid. A tan h works better because its derivative at 0 is 1 whereas the
sigmoid derivative is 0.25.

And that tends to work worse as it goes through multiple layers. | had also told you that
ReL.U works even better. But the reason we did not use ReL U here is this term.
(Refer Slide Time: 17:52)

- - R R e S —

Solve Partial Differential Equations Using Deep Leamning
This example shows how 10 solve Burger's equation using deep leaming

The Burger's aquaton 18 & panal dferential equation (PDE) that arses in diflerent areas of appied
mathomancs. in particular, flud mechanics, NONINoOr ACOUSECS, Cas dynamics, and Yrafhc flows.

Gaven the competational domain| <1, 1] x [0, 1], ths examplo uses & physics informed neural network (PINN) [1]
and trains a multlayer percepron newural network that takes samplos (1) as mput, whore + € [~1. 1] s the
spatial varable. and 1 € (0, 1] is the tme varablo, and tetums a(. 1), wheeo U is the sohston of the Burger's
squaton

o e 0010,

-~ dr 5 o
WD skt = 0) = —nlen jas e Nl CoNABon, and sir = ~1.7) = 0 and wia = | 1) = () a3 the Doundary
condisons
The oxarmplo traing Ihe madel by enforang that grven an nput (1, 1), the output of the network u(+. 1) fulils the

Burger's equation, the boundary condions, and the naal condition

Training this model does not require collecting data in advance. You can generale dala Usng ihe definibon
of the PDE and the constraints.

The termuy,, since ReLU is a linear function, uy, will always turn to 0. So, if you have

a Uy, term, you cannot use ReL. U with any physics informed neural networks because

807

we want the second derivative to be nonzero. Obviously, if we give a model which does

not give a second derivative at all, you are going to get u, is 0 by default everywhere.
(Refer Slide Time: 18:20)

ileration = v,

for epoch = 1:nuntpochs
" reset{sbq);

while hasdata(mbg)

iteration = iteration + 1;

XT = pext{mbq);
X = XT(1,:);
T » XT(2,1);

% Evaluate the model loss and gradients using dlfeva
v modelloss function
[loss,gradients] = dlfevaliaccfun,parameters,X,T,X0,T0,00);

% Update learning rate.
learningRate = initiallearnRate / (l+decayRatesiteration);

Update the network parameters using the adesupdate tion,
[parameters,averageGrad, averageSqGrad] = adamupdate(parameters,gradients,averal
averageSqGrad, iteration, learningRate);

So, once you do this, you have just a simple step here. You can see this number of

epochs, etc. You go they also have a more fancy way of running this where the learning

rate is actually updated. This is another variant of gradient descent. And you can see

this term saying ADAM update. So, as | had told you, this is a variant once again of

gradient descent. ADAM is an optimization.

So, you can see an ADAM solver etc. All the other terms are just in order to make this

whole thing run, okay?

(Refer Slide Time: 18:58)

Check to etloctiveness of the accslerated function by checking the ht and occupancy rate

109 acclun

Evaluate Model Accuracy

For values of r a1 0.25, 0.5, 0.75, and 1, compare the peedicted valuos of the deep learning model with the rue
sclutions of the Burger's equation using the F* error

Sot 1ha Larpet tenes 10 168t the madel al. For each time, caiculaie the solution at 1001 equaly spaced ponts n

e range [+1.1}
116 tTest = (0,25 .5 0,75 1);
11 nusPredictions = 1001;
112 XTest = linspace(-1,1,nunPredictions);
113
1 figure

for 1=linumel(tTest)

tTest(l);

118 TTest = teones(1,numPredictions);

808

And once we do that, you can just like the last time when we checked y versus y hat,
you can now evaluate model accuracy if it runs fully. So, what I will show you now is
we would not have the time to go through the full run, obviously this takes time.
(Refer Slide Time: 19:13)

T e A wruw -
210 > \y cc ¢ ooerat t ea or
for 1=2:nuslayers
name = “fct o 4
U = tanh(U);
weights = pargseters. (name) Welghts;

bias = parameters.(name).Bias;
U = fullyconnect(U, weights, bias);

end

References
1 Marar Rass, Pans Perdkans, and George Em Kamiadaks | Physcs informed (\up(e-r rg (Part 1)
Data-oriven Schutions of Nordinear Parmial Differentia) Equasions hiips Vo " 1.10561
2. C. Bascevant, M. Devite, P. Malderwang, J. Lacrotx, J. Ouazzare, R Peyret, P. Ordand, A. Palera
Spectral and fnte diferonce solutions of the Burgers equation, Computers & Duids 14 (19868) 23-41

Copynipht 2020 The MathWorks, inc

The references are given here at the bottom, okay? So this is the first paper is the Raissi
and Karniadakis paper. Perdikaris is another professor at Penn State who works a lot
on physics informed neural networks. So let me just run this quickly. And | want to
show you just how these proceeds. We cannot show you the end. | will show you the
end result on the MATLAB website. So hopefully this we see some results here.
(Refer Slide Time: 19:49)

nrUw

Epoch B4, Dlapsed 00:00:4), Loss: 0.0M7¢

So yes, you can now see the number of epochs and you can see it updating, okay? So

you can see that the loss updates itself and generally tends to go down. You will see

809

some spike ups sometime in the middle. So as the loss goes down, this is why we
typically plot the loss versus the number of iterations just to see that the whole thing is
behaving as expected. So once the loss comes to one standard value, we say that the
loss has saturated.

So, we have now about 75, 76 iterations here. | will right now stop it and show you the
results on a different thing where on MATLAB's official website.
(Refer Slide Time: 20:37)

. °

So, you can go to this website written here. If you go to the deep learning toolbox, and
then look at solve partial differential equations using deep learning, this is actually
available within MATLAB's website. If you say open in MATLAB online and during,
in case you are taking this course for credit, during the course of this course or during
the course of being enrolled in this NPTEL course, you will be able to open this in
MATLAB and actually run it and you can check how it works. So, the same code here,
| just want to show you the final results.

(Refer Slide Time: 21:18)

810

You can see here that this ran for 3000 epochs, because that was what the number of
epochs was defined to be. You can see here number of epochs is 3000. Yeah, this is
important. | had not mentioned it while showing you the code earlier that the mini batch
size is 1000. Now what does mini batch size mean? Remember that we had a mini batch
gradient descent, batch gradient descent and gradient descent.

So, we had 10,000 points here, but only 1000 of them will be taken each time for
updating the loss function. That is what mini batch size of 1000 means here, okay. So,
we run that. And you can see that after some time, the loss basically gets approximately
to 0, at least in comparison to the original thing. You can see losses 10 power -5, okay?
So, you can also see the final predictions.

(Refer Slide Time: 22:15)

e [

811

The red lines here are the actual Ground Truth, which we never looked at by the way.
Please remember that, in this case the way PINN works, we never actually looked at
the Ground Truth, the red truth, because we were only looking at the derivatives. So
that is the clever part. We did not impose Ground Truth on u, but Ground Truth on

derivatives of u. So, we found out the relationship between derivatives of u.

You can see that the prediction is pretty good. So, in this video, you basically saw that
PINNSs can work pretty well even on a seemingly reasonably complex problem provided
you give sufficient data and you give sufficient compute on this data. So, | will see you

in the next video.

812

