Inverse Methods in Heat Transfer
Prof. Balaji Srinivasan
Department of Mechanical Engineering
Indian Institute of Technology-Madras

Lecture - 62
Code Examples of Logistic Regression -- OR and AND Gates

Welcome back. In this video, | want to show you a code demo for logistic regression,
especially for OR and AND gates.
(Refer Slide Time: 00:29)

Wae 12
Cods Demo for l.oaidrc Rzanuuom COQ,WD\‘]dD

Just recall since we have had some distance from this, what we mean by this, so
remember logistic regression was a simple classification algorithm. And when we are
given some data, let us say some data of the sort of an OR gate, which has four
possibilities 0,0 0,1 1,0 and 1,1. Then we typically get 0 only at one place, which is at

0,0. And everywhere else, we basically get, this is 1,1.

Everywhere else we actually get this one should be 1,0, everywhere else we actually
get 1, okay? So, this is what is made as the table that when x 1 is 0, 0, then the Ground
Truth is 0. And everywhere else it is actually 1. As | had told you during our logistic
regression discussions, basically the classification line goes somewhere here, so that

every data here would be labeled.

If | give some arbitrary data here to be labeled as 1 and any arbitrary data on this side,

that will be labeled as 0. This is supposed to be a proxy for lot of data points here and

lot of data points here. And of course, we are just giving four data points, just as
representative data. So, our data size is a limited data set size, this is equal to 4.
(Refer Slide Time: 02:19)

Daknse s(bl. zb

L (3+9)

v g A
dpiab L,

And the model with which we are trying to accomplish this is the graphical model or
that | have shown here. Here you have y and of course or ¥ and you put a filter here, if
greater than 0.5, then you call this 1. If it is less than 0.5, we call it 0. So, | hope you
recall all this. And the model here was of course, w,, wy, w,. Then the summation z =

Wy + WX, + W, X,. And that is the output here.

And 3 is y. It is the output here is what we call 3. And that is of course sigmoid of z.

(Refer Slide Time: 03:23)

Dakosef S(bl. b

ﬁ\ A L CP‘S)
2@;3 —*ﬁl 0 (&9

Finally, we had our cost function. This was the binary cross entropy cross function, and

that was given as —ylny — (1 — y)In(1 — y). Recollect that we had the calculation

that ﬂ if you calculate it always comes as (¥ — y). And we use this finally in backprop

and calculate and and - was (= ¥)Xo.

66—“11 was (y — y)x,. And aa—v\],z was (¥ — ¥)X,. So, all this is just to remind you of what

we had done here. The idea of course, is in this case, to start with arbitrary w,, w, and
w,, just some random weights | had given you in the video in the ninth week, some
heuristic arguments on how to come up with w,, w; and w,.

(Refer Slide Time: 04:37)

Ct = BCE

ol A

But here we wish to do a full gradient descent solution. And what | want to show you
in the video that comes, the code demo that comes is that | can use the same gradient
descent idea to find OR gate and to find AND gate. But it turns out it does not work for
XOR gate. Why it does not work for XOR gate will be a little bit interesting. But as you
remember, that is basically because XOR gate is not linearly classified.

But nonetheless, let us look at the examples that I am going to show you shortly on
code. So let us move on to the code. This was just a short video to remind you of the
theoretical answers that we had so far. And we will move on to the code using this. So,
I will see you in the code.

(Refer Slide Time: 05:27)

Y~y —p -
Logistic Regression
Two Feature Example -- OR Gate

This example contains a simple OR gato

L L X2 Output
0
0

0
1
0
1

alwln] -

o(2)

clear; cle;
% Loading Datase

3
J x = [0 0;0 1;1 0;1 1;);

y = [0,1,1,1]";

Here is a code that you should find within your directories. It should have been shared
by NPTEL. So, | have now written a general logistic regression code for a two-feature
example. So. this is the data that | showed you earlier. Then we basically are treating it

as if there were just four data points00,01,10,1 1.

And on the right-hand side, in the output column, of course you have y, which is the
Ground Truth that is for 0 0 it is 0, etc. Now our forward model is decided by the simple
model, z = wy + wyx; + wyx,. And ¥ is sigmoid of z. So that is what we are trying
to impose here.

(Refer Slide Time: 06:14)

We will now 1 8 logsic model o This data. Recall all his s, i 0 squesera iha inear cuipul Detween 0 and 1 using
a Sgmodd Activation funciion.

s 18 m = lengthiy); % 5 the number { data points

¥You lnssals 1) yls Sdimmant s fa seesant (ae biss berms

Now here is the data set. | have just written it in this way, this is just MATLAB style

for writing these four data. We can write it this way too. It just makes it a little bit more

compact, if I write it in the way that | wrote earlier. But as you can see, 00,01, 10 and

11, and I have the appropriate y outputs here 0, 1, 1, 1, okay.

So, I will just go back to the old style of writing it, | have just written it as O for this 1
for this 1 for this and 1 for this. That is the Ground Truth. This of course is the general
input.

(Refer Slide Time: 07:00)

Wo will now 1 a logasc model 10 this cata

Recall ab this s, IS 10 squeeze he Inoar output (2) between 0 and 1 using a Sigmokd Activation functon,

n = lengthiy);
X = [ones(m,1) x]; Mugnent x to

Nepochs = 20000; alp = 0.1; SHyperparaset fo
W, J1ist] = LogRegGradDes_BCE(X,y,Nepochs,alp);

Wo can now plot the data vs the model
DrawPlots(X,y,W);:

function DrawPlots(X,y,w)
x1s = X(:,2); x2¢ = X{(:,3);

Now what we are going to do as written here is we are going to fit a logistic model to
this data. What really, we are doing is we are squeezing the linear output, which is z =
wy + wiX; + WX, to lie between 0 and 1, which is our requirement okay, basically
using a sigmoid activation function. So, I will just write it in two lines here. The linear

output here is z of what we call linear activation, basically.

So, this is the way | have written it. | have written a general code. This basically m here
means the number of data points. In this case, we have only four data points. Later on,
when | show you the XOR gate, | will just hard code this, that is I will just assume m
is equal to 4 when I use a full neural network. Now in this case, | have actually used an

extra column of one, set of columns of 1.

You might recall this from our linear regression case. We used to use this all the time,
just so that we can have a simple bias column here. So, | will just demonstrate what x

looks like. So, you can see on your screens, x looks like 1 in the very first column and

then you have 00,01, 1 0and 1 1, okay. So, the purpose is really simple. Purpose is to

use the bias units appropriately.

Now this, I am going to use stochastic gradient descent. But we are going to use 20,000
epochs. Why 20,000 epochs? | have just chosen a random number. But the number of
epochs could be lower, could be higher, it really does not matter too much, because this
is a simple enough case. And | have chosen some random gradient learning rate value.

As we saw earlier, if you use too high learning rate value, you get into trouble.

So, I have chosen alpha equal to 0.1, okay? Now here comes the interesting thing. What
I have done now is basically updated the w okay, or I have actually started with some
random guesses and actually have done a full-scale logistic regression gradient descent.
(Refer Slide Time: 09:23)

LogRegGradOes_BCE « J ORGae Logstc LoghegOendDes DCE

*rardiant Do r stin Ra a1 Rir s e o fren
Gradient Descent for Logistic Regression -- Binary Cross Entropy
General cooe for gracent cascent for IDGISIC rAgresson
Should work for Logistic Regression in any number of features

Uses Binary Cross Entropy Cost function

function [w,)list] = LogRegGradDes BCE(x,y,Nepochs,alp)

- ifinargin<d)
Nepochs = 4;
alp = 0.8;
end

So, what | will do now is actually I will step into this code to the logistic regression
gradient descent code. Just give me a second, it does not seem to be loading properly.
So let us see if we can make it load properly here. So, | managed to load this code. So
here you notice, this is basically a gradient descent code for logistic regression. | have

assumed the binary cross entropy loss function.

Now the code is written a little bit generally. So, it should actually work for if you try
to use it for any number of features. Here, | am going to show you just for two features
X, and x,. But you use some other problem with large number of features. So regardless

of what that problem is, this code should work because it has been written there.

The assumption is very simple, that you have some input X, you have some output y
with some labels and w are the weights, okay? So, weights are what we are going to
discover.

(Refer Slide Time: 10:25)

ifinargin<d)
Nepochs = 4;
alp » 0.8;
ond
[m,n] = size(x); Number of data points, n: Nue

W = rand(n,1);

3 * s 1:Nepochs
0.7513 | Batchupoate(x,y,w,8lp);
0.2551 Modellx,w);
8506 Si(t) = Costly,yh);
end

|

Now I have set some default values here in case | have not given the number of epochs,
it will set it to four, alpha would be set to default at 2.8, you need not look at all these.
This one reads the data and just finds out the number of points and number of features.
So, for example, we now move once you read here, let me step through this, you will
see that it automatically knows that there are four data points, and that there are three

features.

Why three features, there is the bias. And then there are the two extra features. So, when
| do this, you can see that it just initializes these three weights. The first weight 0.7513
is the bias, it is initialized randomly. Then you have 0.2551 that is w;. So, the first, w,
is initialized to 0.7513, w, to 0.2551 and w, to 0.5060. We had already declared 20,000
epochs. So, epochs are 20,000.

And | am just going to cycle through that. And we are doing a batch update. Sorry, |
said | would do a stochastic gradient update, but looks like I am actually going to show
you the batch update code. So here once again, we have the opportunity to go to the
batch update code. So, this is part of this main code only.

(Refer Slide Time: 11:54)

Note that the update 18 now given by

—{’i=(§—,\'>n,

l)\\‘]
Remarkably, this exprossion is the same as Linoar Regroasion with the Loast Squares Loss Function!

function w = BatchUpdate(x,y,w,alp)
im,n] = sizelx);
d) = zerosin,l);
yh = Model(x,w); Wonvard Pass
Delta = yh-y;
for k = 1:n
di(k) = suml x(:,k).sDelta); SGradient cal Mt ic
1 end
5 w=w-~-alped)/n;
end

Model function

This is tho Logistic Regression model

I have written the batch update code. Once again, all this batch update does is takes the
data, the data is visible on your screen. All the biases, the bias terms 1,1,1,1, then the
original data0 0,01, 1 0, 1 1. The Ground Truth for that 0,1,1,1 the current guess for
w. And you can also see the current learning rate alpha. Now what does this do? So,

notice this portion, this is pretty universal.

You will be surprised that more or less, except for maybe this term, this is how even
complicated neural networks would look, okay. So, all you would do is have a forward
pass. So, this here, yh is basically the forward pass. So, the forward pass is this. What
you do is you go to the model.

(Refer Slide Time: 12:52)

Moger . ORGake_Logesc LogflegOradDes BCE Batkchpdae Model

Model function

This is the Logistic Regrosson moded

Recall all this is, s 10 scuoeze 1o near Oulpt betwoen 0 and 1 using a Sigmoid Actvation function
The linear Step = = wy + wix Thistakos x - > 2

The Nonkinear Step » = a(:) Ths takes 2 - >

Sigmod Norlinear Activaion Functon o(;) = i l

+ep=2)
function yh = Model(x,w)
= o) SLinear Step
- o= L /(1sexpl-2)); NSignold Activation function,
1=
°.6M
1.6584

1.5900
1.54%3

And you can see the model here, the logistic regression model. You have the linear step,
and then you have the nonlinear step. So just a combination of these two achieves the
forward model. If we see what happens here? We can quickly check what happens when
we look at the forward model, you see the whole x has come here. You have our current

guesses for w. So, you basically do x multiplied by w.

So, what that will give you is z okay, so you get you can see four different z’s. What
does this correspond to? Each one of them corresponds to one forward pass through one
example. So, the first z corresponds to the 0 0 data point, the second z corresponds to
the 0 1 data point, then 1 0, and finally 1 1. So, we are doing four different forward
passes. If you write it in this way, you can do it at one shot.

This is just a vector implementation or a one-shot implementation of this entire batch.
Now once we do that, all we are finding out is ¥, which is sigmoid activation function.
So, I will do that too. So, when | do that, for each z, | get a y. So, what really, we are
doing is, instead of putting a for loop outside and saying for data set going from 1 to 4,

do four forward passes. | have just done it as a vector.

When | show you, the neural network using backprop for XOR, I will actually show
you a step-by-step implementation of this. But this is just a simple, elegant way to do
it. And really, this is how practical neural network ports are written. But it is easier to
see when we see the simple case of a logistic regression code. So here back to the

original code. We now have ¥ calculated for all four passes.

So, notice what has been done. We had x which was the original data, we had y which
is also original data, we have a guess for w. Now this guess for w mixes with the guess
for x and you actually get what the forward passes, you actually get a value for y for
each value of x, okay. So please remember our original picture. Given a value of X,

given a value of w you get a value of y.

So, you can see that right on your screen. Now delta of course, is the error.
(Refer Slide Time: 15:27)

Bl chi e = | J ORGes Logesc LogFlepeniDes_DOL Dt ok
Pemariably, Bis expresson s the same as Linear "il:w,rl:lm' with e Leasl Squanres Loss Function!

function w = BatchUpdate(x,y,w,alp)
Im.p] = sizelx):
dl rerosin,l);
wyh = Madel(x,wl; “Forward Pa
Delta = yh=y;
! - for k = 1n
dlik) = sun{ x{3 K).=Delta); SGradient calcy
L2 end
W= w - alpsdlim; belta
end [R
-8, 1608
&, 1604

Model function 84725

Thiis i the Logistic Fegrossion moded
Recall all this [, i 1o sousaze Ta Bnoar oulpit befwean D and 1 using a Sigmosd Actvation hanction

The linsar Sl8p @ = wy+ w0 This takas g - > 2

So, the error in the output, you can see. You know, you have a whole bunch of errors.
Now, the advantage is, we knew the gradient calculation was if you remember

(¥ — ¥)xo, | had shown you this in the initial theoretical calculation, and | had also

shown you this in week nine. Then (¥ — y)x; is %. So, you can see the original guess
1

for del J.

dJ here simply represents the three gradients i, I and 2. So, you have these three
aWO an aWZ

calculated here. And of course, we are summing over all four examples. The reason |
have written it like this is just to ensure all the matrix multiplications are covered. So,
you have four different errors for these four different forward passes, and then you

multiply with the appropriate x’s.

So, once you do that, so let me do that here and come till here. You now have dJ. This
is the updated three different gradients that you have. So, 0.2661, -0.2419 and -0.2325.
And once you do that, multiply by the appropriate alpha, you get the new w. So, the old
w was something, you remember 0.6771 or something of that sort. Now you have an
entirely new w. And once we go back, one epoch has passed, okay.

(Refer Slide Time: 17:07)

LogHogGracOes_ BOE « | J OnGae Logetc LogRegOeadOes DCE

“n
[m,n) = size(x); wa: Number of dats points, n: Nusber of features

w = rand(n,1); sinitialize w with n feature
for t = 1:Nepochs
w = Ratch lndatelx,y,w,0lp);

yh Nepochs = 2088
b) woweny,yh) ; MStore) 1 ater plotting

Batch Gradient Update

Note that the update & now given by

al

—_—=(y=yl*n

So, | step here. I can now find out what the new y hat is at this new value of w. And |
can now find out what the cost is. So, if I look at it, my new cost is 0.3833. So, this is
the cost for guessing w to be whatever our current value, older value was. Now of
course, we have to now repeat this 20,000 times, okay? So, if we keep on repeating this
20,000 times, we will basically get a full update of this logistic regression cost function.
(Refer Slide Time: 17:48)

;,._; L = :

Wo will now 1 a logstc model 1o this data
Recall ab this &, |5 10 squeeze the Inear 0utput (2) betwoen 0 and 1 using a Sigmoid Activation functon

12 n = lengthly): %= 15 the number of data points — 4

11 X = [ones(m,1) x]; SAugnent x to account f tern

3 Nepochs = 20000; alp = 0.1; SHyperparometers for
4 = |IW,Jlist] = LogRegGradDes_BCE(X,y, Nepochs,alp);:

Wo can now plot the dasa vs the modol

DrawPlots(X,y,W);

function DrawPlots(X,y,w)
x1s = X(1,2); x2s = X(1,3);

19 scatter3(x1s,x2¢,y, ' filled')
20 hold

x1f1t = linspace(minixls), max(x1s),1001);
x2fit = linspace(min(x2s),max(x2s),1001);
[XIFIT, X2FIT] = meshgrid(x1fit, x2fit);

So, we can come back here and try to go back to here. So, when I do this, | will come
back here now. When | come here actually the number of 20,000 epochs have passed.
You can look J list will be a long vector 20,000. So, you can see slowly your costs are
actually reducing, okay? So let me see if | have plot of the J list. | do not seem to have
that here.

But I can plot that before anything else, a little bit here. Let us see if I can plot that. |
will skip that. Let me actually come back here and show you something a little bit more
interesting. So, if I come here, and we try to plot what this entire function looks like.
Okay, so | will come here.
(Refer Slide Time: 18:53)

— |

Ovawion . ORGate Logeic DrowPon

So, you can see the 3d plot of our y hat. So, notice these four points. The point at 0 0,
the point at 0 1, the point at 1 0 and the point at 1 1, this is what we want to match,
okay? The function that it is predicting is somewhere like this. So, it is actually
predicting the function, please notice that our neural network or in this case, the logistic
model, is basically simply a function. We can look at it from various angles.

(Refer Slide Time: 19:27)

J4

J ORGale Logstc DvawPion

If you look at it from here, it more or less looks simply like the sigmoid okay.

(Refer Slide Time: 19:34)

et . -A . f v .' 7 < ‘A - ‘- ': .‘_f
T ——————————————————]
OrawPion - &

Copy

N

So, but at from a different angle from top when you look at this, you will notice that
there is actually a sharp line here, which classifies it as either belonging to one side
either belonging to 0 or belonging to 1. In fact, if you wish, we can now plot what that
line is. So let me just go here and continue.

(Refer Slide Time: 19:58)

-

Drawion . OfGate_Logetc OranPiots
54 view! [37.327 26.2951);
35 hold off
Now plot what the 2 = 0 ine looks like
ThNS Is Givon Dy £ w wiy & wiry 4 wors = 0. 50, By = <(wy + win Vw
Snce 1t is a ne. wo can cheat by creating the ine 0wt of just two data points:

xp =0 and x; = | We find the corresponding 1; locations and plot the ine in red

figure(2)
Wriginal datasets
33 scatter(xls,x2s, ' filled');
) hold on;
49 =9 Line 10 be plotteds
41 x1 = [0,1];
2 %2 = ~(wil)ew(2)ex1)/w(3);
43 plot(xl,x2,'r');
i axis((@ 1 0 1))
4 - end
Ax

I will come here | can continue here and take a step. And let us see if that is plotted. So
yes. So, this of course, the top here was the 3d plot.
(Refer Slide Time: 20:17)

DrawPions = | J ORGaw logetc = CrawPiots

L+ —

And this is the 2d plot. This red line that you see on your screens is the classifying line,
the line for z equal to 0. The z equal to O line is basically plotted. You can see y equal
to—w O plusw 1x1byw 2. So, you can basically just grade this this line very easily.
So that is what | did. | have, you can go through the code and figure out how | drew

this line. But basically, it is a line the values of which are given here.

We can actually check the values of w. So, w you can see is approximately wy, is -5,
w,, 15 10 and w3 is 10. So, you can think of this, if you take a ratio as -1, 2 and 2, which
is pretty close to the values that we had given in the previous video. So, you can see
this nice logistic regression. We started with some random guess for w when you go

back to this code and check, we had actually given a random guess for w.

And from that random guess for w, we got these converged values and these nice plots
for OR gate. So, the way this OR gate was achieved, | hope you can notice | had again
shown you the sort of top view of this, | do not know if | can achieve that once more.
(Refer Slide Time: 21:36)

BRSO \ o7 y ‘ - . . 4

Dvawion . OAGate_Logeto Orawiots

Cooy

Yeah, here it is. So, this top view from here x; and x, shown here, you can see this
nice, straight line, which changes from you can see from dark blue to dark yellow. As
further and further you move away from this line, it gets more and more sure that it is

1. Further and further, you move towards 0, it gets more and more sure that it is 0.

So, this is an example of simply using logistic regression for the OR gate. We can repeat
this exercise for AND gate as well.
(Refer Slide Time: 22:11)

[Rl e aa—
Logistic Regression
Two Feature Example - AND Gate
This example contains a simple AND gate

Mo X1 X2 Output

0
1
0
1

1
2
) 1
1

clear; cle;

x= (00

 BHE BBHH
y = [0,0,0,1]";

We will now ¥ 8 logatic model 10 this data. Rocall al s 5, I8 10 squeeze the Inoar oDt Detween 0 and 1 using

And really nothing changes other than the data. So, we can see that here AND gate.
Same except now, instead of the 0 1 1 1, which was the case for OR gate, itisnow 00
01

(Refer Slide Time: 22:33)

clear; cle;
[x= (00
LT
1¢;
1L
8,0,0,1]";

We will now it a logatic model 10 this data. Rocall a8 his &, s 10 squeeze 1he knoar cutput between 0 and 1 using
a Sigmoid Activation tunction

10 B = length(y); “» is the nusber of data points
1 X = [ones(®,1) x]; SAugment x 1o account f

Nepochs = 20000; alp = 0.1; “Hyperparameters for
W, Jlist]) = LogRegGradDes_BCE(X,y,Nepochs,alp);

We can now piol [he cata vs the model

So, you will see that literally, almost nothing else has changed. The only thing that has
changed is the data. So, if you compare this code here, and this code here, you will see
I have changed nothing other than y. And the rest of it is probably verbatim exactly the
same. | did nothing other than use the same logistic regression gradient descent. | am

not going to change the code also.

So, this is the power of the approach. The power of the approach is, any data you give,
you basically are just playing with the data set, in order to create a model. Of course,
the weight is going to change, the model is entirely different. So, if we run this, let us
try running this and see. | hope I have not made any errors in the interim.

(Refer Slide Time: 23:26)

So now you can see. So, it has figured out an entirely different model, a different set of
weights. So, 0 0 0 for these three values, and it is now shot up to 1. Again, we can
probably try rotating this. Yes.

(Refer Slide Time: 23:45)

Update Coce Copy

So, if we try rotating this, you will see you have a model, which is sort of diametrically
the opposite of what we had earlier. It is shorter about 0 here and shorter about 1 here
as you go further and further away.

(Refer Slide Time: 24:05)

2 mesh(XIFIT, XQFIT, YFIT)
(L) xlabel('X_1')
ylabel('x 2')
2label('Y")

34 view((37,327 26.205]);
holg off

And I do not know if I have drawn the z equal to one line. So, | could probably do this.
And we can run this code again and can see whether yeah, so you can see this.
(Refer Slide Time: 24:18)

R

So, the classifying line has now, is the red line, it has now moved. That is because wy,
w1, W, OF wy, Wy, Wy have changed. So, the values of w, let us keep those values here.
Let me just check and run this once more.

(Refer Slide Time: 24:40)

19 n = lengthly); %= the number of data point
X = [ones(m,1) x]; WAugment x to & t

Nepochs = 20000; alp = 0.1; SHyperparas rs for the t Reqgre
[W,Jlist] = LogRegGradDes_BCE(X,y,Nepochs,alp)

We can now plot the data vs the model

+ DrawPlots(x,y,W);
W=
13.4007

8.8202
8.8202

So, you can see it is now -13, 8.8 and 8.8. So, it has chosen something like -3 by 2 and
1 by 2, 1 by 2 or something on that sort. So roughly again similar to the cases that I had
shown. No this is not 1 and third, this is one, one and a half or something, okay? So, 1,
3 by 2,3 by 2. So, it is approximately somewhere. But the remarkable thing once again
is that it does find a classifying line, and it finds it simply by iterating using some blind
process such as gradient descent. Now we might get excited, let me now clear all this
output.

(Refer Slide Time: 25:28)

1 clear; clc;
2 % Loading Dataset

‘ x=[00;

S LB H
6 10
4 110
]

)

y = [0,1,1,1]"'; MGround Truth
Wo will now ft a logistic madel 10 this data

Rocall al s is. Is 10 squeeze the near output (7) between 0 and 1 using a Sigmoid Activation function

19 n = lengthly); = is the number of data points — 4

1 X = [ones(m,1) x]; NMugment x 10 account for bias teras

12

13 Nepochs = 20000; alp = 0.1; Miyperparaseters for the Logistic Regression Gradient Desce
1" (w,)list] = LogRegGradDes_BCE(X,y, Nepochs,alp);

W ran noss et tha data wa tha model

And suppose | change this to let us say, let us go back to the OR gate example, just in
case because this is close, and | make this something like XOR. So, | put the XOR gate,
which is or I think actually I should switch thisto 1 0 0 1. It does not matter. 0 1, 1 0.
Yeah 0 1, 1 0 would be XOR. So, suppose I run this. So, the question really is, does this
converge or does this not converge? So, when we run this, let me just go back, run this
case.

You will actually find I will continue and run the whole case. Let us run this tool.
(Refer Slide Time: 26:24)

That it actually does not classify well. You can see the model; the model is a really bad
model. It has made some arbitrary classification line, which is not the correct line at all,
okay?

(Refer Slide Time: 26:45)

y= [8,1,1,0]"; SGround Truth

In fact, if we look at the list that we have of J, I can write this. You can see it seems to
have converged, okay? But it converges right from the beginning, okay? So, it is not
really moving from the beginning, because it finds out some arbitrary w’s, which satisfy
whatever guests it has, okay?

(Refer Slide Time: 27:04)

elovc oy

view([37.327 26.295));
hold off

Now plol what the 2 « 0 line looks ke
This s gven by = = wy 4 wir; 4 wars = 0,50, x5 = <y 4wyt v

Since it 1S a ine, we can cheat by creaing the ne Out Of Just WO data ports

v o=0and x 1. Wa find the corresponding «; locations and plot the lne in red
R e e e
Wit 19,91 e 19,000
e e 0 ' ' " . . . ' T ' e '
' .

So, it is w is basically you see, 10 power -15, w is 000. So, the best it can do, after a
first few initial guesses, it does converge, but it converges to bad values, because this
is simply a bad model, okay. So, there is no good model to be found here. If you look
at, let me look at a different angle, just to make this clear to you because it is a little bit
difficult to see.

(Refer Slide Time: 27:00)

So, the problem here is that XOR cannot be classified using this model. So, the model
converges, but it converges to the wrong value. So just because something converges
does not mean that it is great. It simply means that it converges. But the original model,
that model, which is there within our bands, is a bad model, okay? So that is the

important lesson of running XOR through a logistic regression.

In the next video, I will actually show you how to run XOR. | will just restore this code
to the original code so that when | share it with you guys, you have the right code. But
in the next video, I will show you how to run XOR through a neural network. So, you

actually get a proper correct prediction.

So, for example, when you come here and look at the prediction here, for the XOR that
we had, let me see whether that exists here yh i’s what I think I called it. I seem to have
called it something else. Let us just check this back. This is important. So, | will restore
this and run this once more. We will continue with this. The model here was stored in

¥, but that model is not sitting here | suppose.

Okay sorry, it is not sitting here. But we can simply check that the Ground Truth when
you set 000 is obviously not going to be great, okay? It is simply going to be sigmoid
of zero every time. So, you are going to get 0.5, 0.5, 0.5, 0.5. So that is our prediction

for all four cases here, which you can see here. It is just 0.5 throughout, okay?

So, you can see when you look at the left that the actual prediction, which is this green
square is regardless of what value | gave for x; and x,, it is 0.5 at every single case. So
that is not a great model, but what we will show is, we will get the XOR prediction if
we use a neural network with even one hidden layer. So, we will see that in the next

video. Thank you.

