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In the last few videos, we saw how to use PINNs for direct problems. In the previous video I in 

fact showed you how to incorporate boundary conditions but let us now consider PINNs for 

inverse problems which is where in my personal opinion the true power and genius of the Raissi 

approach as well as the PINN approach lies okay. so now let us take an equation such as this 

okay some heat addition or some other equation you just treat it as a PDE or an ODE for now 

𝑘
d2T

dx2
= sin(𝑥), T(0)  = 15, T(1)  =  20, there is no problem in solving this equation provided 

you know k. but let us say we do not know k, so k is unknown if k is unknown.  

 

And let us say you are within a slab and you make a few temperature measurements let us say 

at four or five occasions you make temperature measurements and you do get values. So let us 

say it is sixteen here seventeen here eighteen here nineteen here just to give you an example I 

mean I am just making up numbers. So let us say we make these measurements we have also 

measured the boundary condition and we want to make an estimate for k. So, the question is 

can we estimate k now without here is the catch either solving have either having an analytical 

solution or a surrogate model? Now what do I mean by this? suppose I have an analytical 



solution let us say the actual analytic analytical solution for this happens to be T equal to let us 

say −𝑠𝑖𝑛(𝑥) or something else okay.  

 

Then you do the standard thing you put that analytical model put it in your forward model you 

never bother about the differential equation now. you have a 𝑇̂ and then you take these 

measurements and then it is a standard inverse problem with some models of the temperature 

you know that 𝑇 = w0 + w1𝑠𝑖𝑛(𝑥), then you can just solve it for w0 and w1, but we do not 

have an analytical solution dependent on k. Now we do not have a surrogate model for the 

forward solution also and you are not able to solve using CFD here is where PINN is very 

helpful so the PINN solution works as follows. 

(Refer Slide Time: 03:00) 

 

The PINN solution is assumed that 𝑇̂(x) is a neural network and this neural network has some 

weights okay. I am going to call it w vector okay so assume that is the neural network assume 

that k has some initial value. what do I mean by initial value? I am taking an initial guess let us 

say k initial guess is fifteen watts per metre kelvin, again assume w vector has some initial 

guesses this is as usual so w0 and w1 etcetera, you make some guesses for their values okay. 

Now we have to improve by gradient descent. we have no other go other than to improve by 

gradient descent, but how are we going to improve by gradient descent? 

(Refer Slide Time: 04:16) 



 

We already have 𝑇̂ is neural network of (x; w), do a forward pro with the given value of w this 

gives you some 𝑇̂ it also gives you some 
d2𝑇̂

dx2 as we saw earlier -k
d2𝑇̂

dx2 - sin(x) okay. So, this is 

of course our JPDE or JODE square it adds it for all the points okay one by m as usual. Now notice 

this k is our guessed value of k and within this 
d2𝑇̂

dx2 lie our guessed values of w okay x is of 

course known because we are guessing at specific x’s okay.  

 

So, which x should we guess at we guess everywhere in between for PDE loss but this J has 

three components now JPDE can be any point in the domain, why because PDE is satisfied at 

every point in the domain now at these points we still need the value of k for this loss. k is from 

the guessed value okay so really nothing has changed from our usual PINN except that you have 

a new parameter k which you are guessing for then you also have your boundary condition 

losses which of course is the same as before this will be (𝑇̂(0) − 15)
2

+ (𝑇̂(1) − 20)
2
, so that 

is also straight forward.  

 

Now the final part is J data or J experiment. now what is this we had these four points where 

we measured the temperature. Now the measured temperature is something and our hypothesis 

function will say that the temperature is something else. So, we need to make sure that the 

difference between these two is reduced to as little as possible. So, for example we would add 

this would be sorry temperature at all the experimental points minus the actual by some called 

experimental points I just call it (Tî − Ti)
2
 where i are all the experimental points. So let us look 

at this loss function once more J is made up of three parts, first part is the pure physics part.  

 



The pure physics part can be any point in the domain you can just choose as many points as you 

want you can choose thousand ten thousand a million the choice is yours, the more you add 

obviously the more computation you spend in finding out JPDE. but you can spend you can find 

out any point in the domain but the catch here which is different from the initial forward pass 

that we did in the last three videos is this scale is part of the iteration. So, you have to start with 

an initial guess for k that is fine. calculate this through the neural network this is of course 

known, boundary conditions are given in the problem whether it is a function boundary 

condition or a derivative boundary condition you can easily apply it (𝑇̂(0) − 15)
2

+

(𝑇̂(1) − 20)
2
 and add.  

 

Finally, you have to look at the fact that some extra information has been given which is the 

experimental values. This is what determine the inverse problem. So, you ensure that the 

prediction you are making with your neural network matches the experimental as close as 

possible. So, we have these three losses that is fine now what do you need to update we need to 

update w but we also need to update k. we can update w easily, w = w-𝛼
𝜕J

𝜕w
, gradient descent. 

Now what do we do about k turns out k is very straightforward to k = k-𝛼
𝜕J

𝜕k
  this is also gradient 

descent. So, now notice the beauty of this system which is that here w, were the parameters of 

the neural network and k is the parameter which sits in the PDE but as far as gradient descent 

is concerned these two are not different, they are just parameters.  

 

So, you update these w, as w-𝛼
𝜕J

𝜕w
 and k you update as, k-𝛼

𝜕J

𝜕k
 really nothing really is different 

as far as the neural network is concerned in fact Raissi and Karniadakis which I show you shortly 

they just put the same usual neural network algorithms and it just works like a charm okay. So, 

the entire process is such that the inverse solution is baked in into the forward solution. what do 

I mean by that? notice that when you want to solve this problem if I want to solve this problem 

traditionally and somebody gave you this problem and said solve it and I will not tell you k 

there is no way you can solve it okay you cannot solve it here too you cannot solve it but you 

solve it as if you knew a value of k you solve it the next guess for k depends on what the solution 

was okay for this guessed value of k so.  

 

Everything is incorporated simultaneously which is really elegant I mean it is a really a pretty 

way of solving the whole problem. So, what you do is unlike the surrogate model approach the 



surrogate model approach will be okay I will guess one value of k solve this problem, guess 

another value of k solve this problem, guess a third value of k solve this problem solve this for 

two hundred values as I showed you in the first video in this series then basically have a 

correlation between temperature distribution and k make a neural network for that. After that 

when I give you new temperature measurements, then you see which k fits amongst all these 

simulations that you did you solve that using a genetic algorithm.  

 

This one is much simpler guess a k guesses a temperature distribution next iteration improve 

temperature distribution improve k also based on what based on three pieces of data. I know the 

boundary condition, I know so that is one piece of data I know that the physics should satisfy 

this equation everywhere in the middle, that is this loss JPDE loss JBC loss and the third and final 

part is the experimental data that we collected. notice that all three feeds towards this gradient, 

so, when k is updated k is updated based on for this k was the PDE satisfied for this k was the 

BC satisfied and for this k was the experimental value satisfied.  

 

Similarly, w looks at is the PDE satisfied is the BC satisfied is the experimental value satisfied. 

now all three are updated simultaneously there is no other method like this prior to this prior to 

the PINN method in the literature. So, what I would like to show you as I promised in the 

previous video is to show some of these seminal papers shortly. so please just look at the papers 

that I will be showing in a minute or so. 

(Refer Slide Time: 12:14) 

 

So, the first paper I wish to show you was this seminal paper called artificial neural networks 

ANN for solving ODE and PDE Lagaris et al. He is a professor in Greece the paper was 



published in nineteen ninety-seven and it took a good twenty-one twenty-two years for it to sort 

of get incorporated into the modern framework by Raissi and Karniadakis. So, you can see these 

talks about how it incorporates initial and boundary value problems using architectural neural 

networks. you can also see this trial function is written it is a function of two parts.  

 

This is not the same as the Raissi approach, these two parts one part satisfies the boundary 

condition exactly whereas in the Raissi thing everything is satisfied in the neural sorry in least 

square sense and this contains no adjustable parameters the second part is just the PDE okay it 

only contains the PDEs okay. (Video Starts: 13:17)  

 

So, I will just show you their approach their notation is a little bit different you can see this is 

the equivalent of our n here they just write it and psi is the equivalent of our t or our u whichever 

function we are trying to solve you write the whole equation as something equal to zero and 

they write it as two parts. this part satisfies the BCs exactly okay so that is different from what 

happens in Raissi. this part is for the PDE or the ODE okay while not affecting this okay.  

 

So, this is a very clever construction it sits there but overall, the Raissi approach is easier to 

apply for general problems even though it is less adjustable for various equations. So, you can 

see this it looks a little bit complicated but the idea is very simple. if you have this equation, 

you would turn it into you can see d psi dx minus f the whole square okay. so that is basically 

the loss function okay.  

 

This on the other hand the boundary condition is ensured to be satisfied exactly here x is an 

initial value problem. So, this is like time. So, they satisfy it exactly. So, you can see they do 

this construction of as I told you x(1-x) etcetera so this is in order to satisfy a boundary value 

problem where you have a Dirichlet boundary condition and Neumann boundary condition on 

the right-hand side and they have several special constructions. now they deal with as you can 

see Laplace equation an example which I also gave you once again you will see a special 

function construction in order to make the boundary conditions satisfied exactly. So, BCs are 

exactly satisfying. incidentally this paper you can search for on archive and google and you will 

obtain it regardless of whether you are within an educational institution or not.  

 

Now again notice the function the function is since it was originally 𝜕2𝜓 =  f(x), f(x,y) now 

you can see (𝜕2𝜓 − 𝑓(𝑥, 𝑦) )2 is minimized and you take some points, these are the PDE loss 



points within the domain. So, they satisfy this and they have taken a sigmoid neuron, you can 

see that the Lagaris paper is a shallow network just one hidden layer with ten hidden units and 

they get very good results with that this is of course please remember nineteen ninety-seven 

computational power etcetera was not there at that time. now with this they satisfied they solved 

an impressive series of problems we can see quite a complicated ode you cannot they have an 

analytical solution here and they compare with it another ODE here.  

 

These are first order odes then you have a second order ode then they of course satisfied coupled 

first order odes which is very impressive and then they look at PDEs okay. So, all these are 

solved here a whole bunch of odes. so exact solutions here I want to show you something which 

helps you visualize what is happening. So, look at the final solution of the problem okay so this 

is solution accuracy let us say the solution of the problem is this when we say that 𝑇̂(𝑥, 𝑦) is 

this what we mean is 𝑇̂ is a neural network that when you take in x and y that outputs this 

function this entire function is outputted by this. So, this is 𝑇̂(𝑥, 𝑦) let us say this is x and this 

is y the output is 𝑇̂ of x of y regardless of whether it is a neural network or not.  

 

It is simply an analytical function I have probably said this hundred times but despite me saying 

it usually in classes I find that people miss this simple point okay and the what was the data 

there was no data other than the boundary conditions. the boundary conditions were used and 

the other information piece that was used is PDE is satisfied everywhere within the domain 

okay. So, whether you look at this function so this is again a solution accuracy function all of 

this function this is again 𝑇̂(𝑥, 𝑦) what enables our neural network do this is that if I change w 

one of the shapes will look like this if I change w the other shape will look like this. (Video 

Ends: 18:01) So it is the universality of our neural networks that allows us to do this with 

Lagaris approach. 
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Now I what I want to show you also is the other seminal paper you can see this is twenty nineteen 

where you can see now that they are solving both forward as well as inverse problems as I said 

this apart from being the important point of our course also is a really seminal contribution as 

far as this paper is concerned. just a small change about Lagaris idea but sometimes small 

changes can lead to very profound effects. 

 

(Video Starts: 18:41) So, that is what is being done here you can see that they talk about 

supervised learning tasks but they are adding physics. the way they look at it is some 

experimented data is given as well as a certain amount of physics is known. So, they define the 

governing equation this way.  

 

Let us say it is an unsteady problem or a time dependent problem so t, here is prime so just to 

give you an example you could have something like ut you could have an advection equation 

ut plus let us say aux equal to zero in that case if you look at 𝒩, 𝒩 simply is an operator which 

is aux okay. So, 𝒩 could in general be a nonlinear operator for example as we will see later you 

can have burgers equation where you have a nonlinear type. So, for example here is burgers 

equation where you have uux-uxx I will show you that equation shortly. So, all they have is a 

simple method just like the Lagaris method which satisfies this at one shot. what we are doing 

of course is, we are saying that you have the operator f this is f here is not a function it is an 

operator.  

 

Operator meaning it takes a function and returns another sort of function so it takes u and it 

returns 
𝜕u

𝜕t
+ 𝒩(u) and here is what they have they have the same idea that I told you the least 



square loss J equal to J at the experimental points or J at what they call the u points or the data 

points plus J where we impose the physics which is through the PDE. So, wherever you know 

the experimental measurements or the computational measurements already you can see this is 

the ground truth and your network returns this okay. So, similarly, this is simply calculated from 

the network by differentiation yeah so as they mentioned here MSEu corresponds to initial data 

boundary data and any experimental data that you have MSEf is basically where you have 

physics.  

 

So, these points where we impose them are sometimes called collocation points. here they have 

like we have said that even though this has been observed in previous studies, they are now 

using modern computational tools such as TensorFlow and other things. again, if time permits, 

I would like to show you an entire code for this using MATLAB in the next week okay. So, 

they have several examples here one of these examples let me show you the results they actually 

showed the Schrodinger equation also. but looks like a complicated equation so now one 

beautiful thing about this entire process is you do not need to put much effort to create an entire 

mesh or anything of that sort we just throw points here and there ensure the boundary conditions 

and initial conditions are satisfied.  

 

for example, if you want to satisfy this all you would say is (h(t, -5)-h(t, 5))2 you add this to 

one J boundary condition loss okay. you can add this as (h(0, x)-2 sec h(x))2 you see how 

simple it is all you need to do is this square this will be added to the JPDE loss okay. None of us 

know or in case you do not know Schrodinger’s equation you need not worry it works exactly 

in the same way. So, here it is we have some solutions we have given these data points which 

are basically add the boundary and initial conditions. So, these are just like the usual thing and 

you get a full solution here of Schrodinger equation which is apparently really good okay.  

 

So, I am not going to show you the discrete time models here I want to show you the burgers 

equation solutions okay so here is one interesting example of an inverse problem that they did 

okay. So, here is an inverse problem they have a cylinder vortex shading cylinder at a particular 

Reynolds number re equal to hundred. So, now what they have is they made a lot of 

measurements in the entire domain. They just have points let us say they are coming from piv 

or some such experimental measurements. Now unlike what we did with the surrogate model 

approach which I showed you as the first video in the series all they did was you measure u you 



measure v and you put in the Navier stokes equations and you put in the Navier stokes equations 

and you know you serve it this way.  

 

Suppose the Navier stokes equations let me just write it here is ut + uux + vuv = -px + 𝜇∇2u 

some of you might remember this if you do not it does not matter you have a complicated 

equation, so this is just the u momentum equation all you need to do is say ut + uux + vuv +

px-𝜇∇2u, calculate this square it and this should be minimized okay very simple idea you take 

a guess for u you take a guess for v they do this using the streamline vorticity formulation which 

it will take us too far away to discuss that. but you do anything of this sort this is a simple 

measurement and then ensure that J equal to JPDE plus J boundary condition plus J experimental 

data, minimize this.  

 

Now what was the inverse problem they were solving in some cases you can try and find out 

what this mu is okay you can actually solve for mu by looking at a fielding okay. all these 

inverse problems can be solved with this nice approach. they also had some nice burgers 

equation solutions which I come yeah here it is. (Video Ends: 25:32) 
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So, burgers equation this equation is ut it is a one-dimensional equation equal to sorry 𝜇 times 

uxx or 𝜇 times uxx so you can solve both forward and inverse problems here you can see this 

nice sharp solution. again, the same thing you basically just say u is a neural network of x and t 

so take xt put a neural network here it gives out u or you can say 𝑢̂ and after that all you need 

to do is say okay minimize JPDE plus JBC plus J initial conditions  

 



So, notice there is data given here initial condition is for all x for t equal to zero. this is left side 

x, x equal to zero for all t right hand side nothing is given and, on the top, you have some other 

conditions. So, you can give all sorts of data points and just ensure that this summation is 

minimized. The weights of the neural network w are updated as usual w = w-𝛼
𝜕J

𝜕w
, keep on 

updating it, you get the final set of w you just plot this here and you get a very nice elegant 

solution for this problem. Now this tended to have certain problems. 

(Refer Slide Time: 27:14) 

 

And I will just briefly end this section of how inverse problems as well as forward problems are 

solved using a couple of papers that were published in by a PhD Student at IIT Madras Vikas 

Dwivedi. this is a good paper called physics informed extreme learning machine. the idea was 

using a shallow network and this is called an PIELM structure you fix the weights here but 

change the weights at the output and it turns out that this works really well for linear equations. 

 

(Video Starts: 27:46) So we were able to solve for fairly complex domains very quickly PINN 

tends to be a little bit slow otherwise compared to conventional methods. so even in points like 

this you can simply put points around as you can see this is a map of Australia and this is a star 

usually if you use if any of you are familiar with finite difference or finite volume you actually 

need good machine here whereas PINN does not require any machine.  

 

Another idea by the same student who has now of course finished this PhD was to use distributed 

learning machines which is somewhat similar to using a mesh that is you use different neural 

networks in different domains okay. So, you use one neural network here one other neural 

network here so on and so forth and they added an extra interface term. So, you will see this 



here if this is a linear equation, we have one such equation sitting within your assignment also. 

So, you will see this is distributed. you can also do time marching step by step from one step to 

the other again this is not going to come in the exam or in the assignment. this is just to show 

you some advances that have happened here or maybe some of these advances might be obvious 

to you.  

 

So, typically, as is shown here J sum usually the PDE loss plus some regularization loss and we 

added at the interfaces to ensure some continuity. (Video Ends: 29:27)  

 

So overall, the PINN approach unlike the surrogate model approach or unlike the usual forward 

model approach that we have seen so far, lets you solve inverse problems in one shot. it solves 

inverse problem as well as forward problem in one shot as I showed you earlier on in this video. 

So, the method is extremely powerful and I expect it is going to become even more powerful in 

the years to come. So, I hope you found this discussion on physics informed neural networks 

over these last three four videos useful. please do let me know in the forum in case you have 

some questions since it is a research topic some of what I said might not be particularly or 

always clear. So, I will be happy to answer those questions. otherwise, I will see you in the next 

week. Thank you. 

 


