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In the last few videos, we saw how to use PINNs for direct problems. In the previous video | in
fact showed you how to incorporate boundary conditions but let us now consider PINNs for
inverse problems which is where in my personal opinion the true power and genius of the Raissi
approach as well as the PINN approach lies okay. so now let us take an equation such as this

okay some heat addition or some other equation you just treat it as a PDE or an ODE for now
2
k% = sin(x), T(0) = 15,T(1) = 20, there is no problem in solving this equation provided

you know K. but let us say we do not know k, so k is unknown if k is unknown.

And let us say you are within a slab and you make a few temperature measurements let us say
at four or five occasions you make temperature measurements and you do get values. So let us
say it is sixteen here seventeen here eighteen here nineteen here just to give you an example |
mean | am just making up numbers. So let us say we make these measurements we have also
measured the boundary condition and we want to make an estimate for k. So, the question is
can we estimate k now without here is the catch either solving have either having an analytical
solution or a surrogate model? Now what do | mean by this? suppose | have an analytical



solution let us say the actual analytic analytical solution for this happens to be T equal to let us

say —sin(x) or something else okay.

Then you do the standard thing you put that analytical model put it in your forward model you
never bother about the differential equation now. you have a T and then you take these
measurements and then it is a standard inverse problem with some models of the temperature
you know that T = w, + w,sin(x), then you can just solve it for w, and w,, but we do not
have an analytical solution dependent on k. Now we do not have a surrogate model for the
forward solution also and you are not able to solve using CFD here is where PINN is very
helpful so the PINN solution works as follows.
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The PINN solution is assumed that 7'(x) is a neural network and this neural network has some
weights okay. | am going to call it w vector okay so assume that is the neural network assume
that k has some initial value. what do | mean by initial value? | am taking an initial guess let us
say k initial guess is fifteen watts per metre kelvin, again assume w vector has some initial
guesses this is as usual so w, and w;, etcetera, you make some guesses for their values okay.
Now we have to improve by gradient descent. we have no other go other than to improve by
gradient descent, but how are we going to improve by gradient descent?
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We already have T is neural network of (x; w), do a forward pro with the given value of w this

, 5 . azf . 27 . .
gives you some T it also gives you some <z 8 we saw earlier -kﬁ- sin(x) okay. So, this is

of course our Jepe Or Jope square it adds it for all the points okay one by m as usual. Now notice
n
this k is our guessed value of k and within this 372 lie our guessed values of w okay x is of

course known because we are guessing at specific x’s okay.

So, which x should we guess at we guess everywhere in between for PDE loss but this J has
three components now Jepe can be any point in the domain, why because PDE is satisfied at
every point in the domain now at these points we still need the value of k for this loss. k is from
the guessed value okay so really nothing has changed from our usual PINN except that you have
a new parameter k which you are guessing for then you also have your boundary condition

losses which of course is the same as before this will be (7(0) — 15)° + (T(1) — 20)°, so that

is also straight forward.

Now the final part is J data or J experiment. now what is this we had these four points where
we measured the temperature. Now the measured temperature is something and our hypothesis
function will say that the temperature is something else. So, we need to make sure that the
difference between these two is reduced to as little as possible. So, for example we would add
this would be sorry temperature at all the experimental points minus the actual by some called

experimental points I just call it (T, — Ti)2 where i are all the experimental points. So let us look

at this loss function once more J is made up of three parts, first part is the pure physics part.



The pure physics part can be any point in the domain you can just choose as many points as you
want you can choose thousand ten thousand a million the choice is yours, the more you add
obviously the more computation you spend in finding out Jepe. but you can spend you can find
out any point in the domain but the catch here which is different from the initial forward pass
that we did in the last three videos is this scale is part of the iteration. So, you have to start with
an initial guess for k that is fine. calculate this through the neural network this is of course

known, boundary conditions are given in the problem whether it is a function boundary
condition or a derivative boundary condition you can easily apply it (T‘(O) —15)2 +

(T(1) — 20)” and add.

Finally, you have to look at the fact that some extra information has been given which is the
experimental values. This is what determine the inverse problem. So, you ensure that the
prediction you are making with your neural network matches the experimental as close as

possible. So, we have these three losses that is fine now what do you need to update we need to

update w but we also need to update k. we can update w easily, w = w-a ;—Jv, gradient descent.

Now what do we do about k turns out K is very straightforward to k = k-a g—i this is also gradient

descent. So, now notice the beauty of this system which is that here w, were the parameters of
the neural network and k is the parameter which sits in the PDE but as far as gradient descent

is concerned these two are not different, they are just parameters.

So, you update these w, as w-a % and k you update as, k-a% really nothing really is different

as far as the neural network is concerned in fact Raissi and Karniadakis which | show you shortly
they just put the same usual neural network algorithms and it just works like a charm okay. So,
the entire process is such that the inverse solution is baked in into the forward solution. what do
I mean by that? notice that when you want to solve this problem if | want to solve this problem
traditionally and somebody gave you this problem and said solve it and I will not tell you k
there is no way you can solve it okay you cannot solve it here too you cannot solve it but you
solve it as if you knew a value of k you solve it the next guess for k depends on what the solution

was okay for this guessed value of k so.

Everything is incorporated simultaneously which is really elegant | mean it is a really a pretty
way of solving the whole problem. So, what you do is unlike the surrogate model approach the



surrogate model approach will be okay I will guess one value of k solve this problem, guess
another value of k solve this problem, guess a third value of k solve this problem solve this for
two hundred values as | showed you in the first video in this series then basically have a
correlation between temperature distribution and k make a neural network for that. After that
when | give you new temperature measurements, then you see which k fits amongst all these

simulations that you did you solve that using a genetic algorithm.

This one is much simpler guess a k guesses a temperature distribution next iteration improve
temperature distribution improve k also based on what based on three pieces of data. | know the
boundary condition, I know so that is one piece of data | know that the physics should satisfy
this equation everywhere in the middle, that is this loss Jrpe l0ss Jsc loss and the third and final
part is the experimental data that we collected. notice that all three feeds towards this gradient,
so, when k is updated k is updated based on for this k was the PDE satisfied for this k was the

BC satisfied and for this k was the experimental value satisfied.

Similarly, w looks at is the PDE satisfied is the BC satisfied is the experimental value satisfied.
now all three are updated simultaneously there is no other method like this prior to this prior to
the PINN method in the literature. So, what | would like to show you as | promised in the
previous video is to show some of these seminal papers shortly. so please just look at the papers
that I will be showing in a minute or so.
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Q We present a method to solve initial and boundary value problems using artificial neural
/. networks. A trial solution of the differential equation is written as a sum of two parts. The first
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.
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= problems and present comparisons with finite elements for several cases of partial differential
v

equations.

So, the first paper | wish to show you was this seminal paper called artificial neural networks

ANN for solving ODE and PDE Lagaris et al. He is a professor in Greece the paper was



published in nineteen ninety-seven and it took a good twenty-one twenty-two years for it to sort
of get incorporated into the modern framework by Raissi and Karniadakis. So, you can see these
talks about how it incorporates initial and boundary value problems using architectural neural

networks. you can also see this trial function is written it is a function of two parts.

This is not the same as the Raissi approach, these two parts one part satisfies the boundary
condition exactly whereas in the Raissi thing everything is satisfied in the neural sorry in least
square sense and this contains no adjustable parameters the second part is just the PDE okay it
only contains the PDEs okay. (Video Starts: 13:17)

So, I will just show you their approach their notation is a little bit different you can see this is
the equivalent of our n here they just write it and psi is the equivalent of our t or our u whichever
function we are trying to solve you write the whole equation as something equal to zero and
they write it as two parts. this part satisfies the BCs exactly okay so that is different from what

happens in Raissi. this part is for the PDE or the ODE okay while not affecting this okay.

So, this is a very clever construction it sits there but overall, the Raissi approach is easier to
apply for general problems even though it is less adjustable for various equations. So, you can
see this it looks a little bit complicated but the idea is very simple. if you have this equation,
you would turn it into you can see d psi dx minus f the whole square okay. so that is basically

the loss function okay.

This on the other hand the boundary condition is ensured to be satisfied exactly here x is an
initial value problem. So, this is like time. So, they satisfy it exactly. So, you can see they do
this construction of as I told you x(1-x) etcetera so this is in order to satisfy a boundary value
problem where you have a Dirichlet boundary condition and Neumann boundary condition on
the right-hand side and they have several special constructions. now they deal with as you can
see Laplace equation an example which | also gave you once again you will see a special
function construction in order to make the boundary conditions satisfied exactly. So, BCs are
exactly satisfying. incidentally this paper you can search for on archive and google and you will

obtain it regardless of whether you are within an educational institution or not.

Now again notice the function the function is since it was originally 9%y = f(x), f(x,y) now

you can see (0% — f(x,y) )? is minimized and you take some points, these are the PDE loss



points within the domain. So, they satisfy this and they have taken a sigmoid neuron, you can
see that the Lagaris paper is a shallow network just one hidden layer with ten hidden units and
they get very good results with that this is of course please remember nineteen ninety-seven
computational power etcetera was not there at that time. now with this they satisfied they solved
an impressive series of problems we can see quite a complicated ode you cannot they have an

analytical solution here and they compare with it another ODE here.

These are first order odes then you have a second order ode then they of course satisfied coupled
first order odes which is very impressive and then they look at PDEs okay. So, all these are
solved here a whole bunch of odes. so exact solutions here | want to show you something which
helps you visualize what is happening. So, look at the final solution of the problem okay so this
is solution accuracy let us say the solution of the problem is this when we say that T'(x, y) is
this what we mean is T is a neural network that when you take in x and y that outputs this
function this entire function is outputted by this. So, this is T'(x, y) let us say this is x and this

is y the output is T of x of y regardless of whether it is a neural network or not.

It is simply an analytical function I have probably said this hundred times but despite me saying
it usually in classes | find that people miss this simple point okay and the what was the data
there was no data other than the boundary conditions. the boundary conditions were used and
the other information piece that was used is PDE is satisfied everywhere within the domain
okay. So, whether you look at this function so this is again a solution accuracy function all of
this function this is again T(x, y) what enables our neural network do this is that if | change w
one of the shapes will look like this if |1 change w the other shape will look like this. (Video
Ends: 18:01) So it is the universality of our neural networks that allows us to do this with
Lagaris approach.
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Now | what | want to show you also is the other seminal paper you can see this is twenty nineteen
where you can see now that they are solving both forward as well as inverse problems as | said
this apart from being the important point of our course also is a really seminal contribution as
far as this paper is concerned. just a small change about Lagaris idea but sometimes small

changes can lead to very profound effects.

(Video Starts: 18:41) So, that is what is being done here you can see that they talk about
supervised learning tasks but they are adding physics. the way they look at it is some
experimented data is given as well as a certain amount of physics is known. So, they define the

governing equation this way.

Let us say it is an unsteady problem or a time dependent problem so t, here is prime so just to
give you an example you could have something like u, you could have an advection equation
u, plus let us say auy equal to zero in that case if you look at V', V' simply is an operator which
is auy okay. So, V" could in general be a nonlinear operator for example as we will see later you
can have burgers equation where you have a nonlinear type. So, for example here is burgers
equation where you have uuy-uy, | will show you that equation shortly. So, all they have is a
simple method just like the Lagaris method which satisfies this at one shot. what we are doing
of course is, we are saying that you have the operator f this is f here is not a function it is an

operator.

Operator meaning it takes a function and returns another sort of function so it takes u and it

returns Z—‘: + V'(u) and here is what they have they have the same idea that I told you the least



square loss J equal to J at the experimental points or J at what they call the u points or the data
points plus J where we impose the physics which is through the PDE. So, wherever you know
the experimental measurements or the computational measurements already you can see this is
the ground truth and your network returns this okay. So, similarly, this is simply calculated from
the network by differentiation yeah so as they mentioned here MSE, corresponds to initial data
boundary data and any experimental data that you have MSE; is basically where you have

physics.

So, these points where we impose them are sometimes called collocation points. here they have
like we have said that even though this has been observed in previous studies, they are now
using modern computational tools such as TensorFlow and other things. again, if time permits,
I would like to show you an entire code for this using MATLAB in the next week okay. So,
they have several examples here one of these examples let me show you the results they actually
showed the Schrodinger equation also. but looks like a complicated equation so now one
beautiful thing about this entire process is you do not need to put much effort to create an entire
mesh or anything of that sort we just throw points here and there ensure the boundary conditions
and initial conditions are satisfied.

for example, if you want to satisfy this all you would say is (h(t,-5)-h(t, 5))? you add this to
one J boundary condition loss okay. you can add this as (h(0,x)-2 sec h(x))? you see how
simple it is all you need to do is this square this will be added to the Jppe loss okay. None of us
know or in case you do not know Schrodinger’s equation you need not worry it works exactly
in the same way. So, here it is we have some solutions we have given these data points which
are basically add the boundary and initial conditions. So, these are just like the usual thing and

you get a full solution here of Schrodinger equation which is apparently really good okay.

So, I am not going to show you the discrete time models here | want to show you the burgers
equation solutions okay so here is one interesting example of an inverse problem that they did
okay. So, here is an inverse problem they have a cylinder vortex shading cylinder at a particular
Reynolds number re equal to hundred. So, now what they have is they made a lot of
measurements in the entire domain. They just have points let us say they are coming from piv
or some such experimental measurements. Now unlike what we did with the surrogate model

approach which | showed you as the first video in the series all they did was you measure u you



measure v and you put in the Navier stokes equations and you put in the Navier stokes equations

and you know you serve it this way.

Suppose the Navier stokes equations let me just write it here is u; + uuy, + vu, = -p, + uV?u
some of you might remember this if you do not it does not matter you have a complicated
equation, so this is just the u momentum equation all you need to do is say u; + uuy + vu, +
px-1VZ2u, calculate this square it and this should be minimized okay very simple idea you take
a guess for u you take a guess for v they do this using the streamline vorticity formulation which
it will take us too far away to discuss that. but you do anything of this sort this is a simple
measurement and then ensure that J equal to Jeoe plus J boundary condition plus J experimental

data, minimize this.

Now what was the inverse problem they were solving in some cases you can try and find out
what this mu is okay you can actually solve for mu by looking at a fielding okay. all these
inverse problems can be solved with this nice approach. they also had some nice burgers
equation solutions which | come yeah here it is. (Video Ends: 25:32)
(Refer Slide Time: 25:34)
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Fig. A6. Burgers’ equation: Top: Predicted solution u(t, x) along with the initial and boundary training data. In addition we are using 10,000 collocation
points generated using a Latin Hypercube Sampling strategy. Bottom: Comparison of the predicted and exact solutions corresponding to the three temporal N

So, burgers equation this equation is u; it is a one-dimensional equation equal to sorry u times
Uy, OF u times uy, S0 you can solve both forward and inverse problems here you can see this
nice sharp solution. again, the same thing you basically just say u is a neural network of x and t
so take x; put a neural network here it gives out u or you can say 4 and after that all you need

to do is say okay minimize Jrpe plus Jsc plus J initial conditions



So, notice there is data given here initial condition is for all x for t equal to zero. this is left side
X, X equal to zero for all t right hand side nothing is given and, on the top, you have some other

conditions. So, you can give all sorts of data points and just ensure that this summation is
minimized. The weights of the neural network w are updated as usual w = w-a ;—v]v, keep on

updating it, you get the final set of w you just plot this here and you get a very nice elegant
solution for this problem. Now this tended to have certain problems.
(Refer Slide Time: 27:14)
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1. Introduction lected locations inside the domain and on the boundary. The neu-

ral network is used as the basis function to approximate the so-NF

And I will just briefly end this section of how inverse problems as well as forward problems are

solved using a couple of papers that were published in by a PhD Student at IIT Madras Vikas
Dwivedi. this is a good paper called physics informed extreme learning machine. the idea was
using a shallow network and this is called an PIELM structure you fix the weights here but

change the weights at the output and it turns out that this works really well for linear equations.

(Video Starts: 27:46) So we were able to solve for fairly complex domains very quickly PINN
tends to be a little bit slow otherwise compared to conventional methods. so even in points like
this you can simply put points around as you can see this is a map of Australia and this is a star
usually if you use if any of you are familiar with finite difference or finite volume you actually

need good machine here whereas PINN does not require any machine.

Another idea by the same student who has now of course finished this PhD was to use distributed
learning machines which is somewhat similar to using a mesh that is you use different neural
networks in different domains okay. So, you use one neural network here one other neural

network here so on and so forth and they added an extra interface term. So, you will see this



here if this is a linear equation, we have one such equation sitting within your assignment also.
So, you will see this is distributed. you can also do time marching step by step from one step to
the other again this is not going to come in the exam or in the assignment. this is just to show
you some advances that have happened here or maybe some of these advances might be obvious

to you.

So, typically, as is shown here J sum usually the PDE loss plus some regularization loss and we

added at the interfaces to ensure some continuity. (Video Ends: 29:27)

So overall, the PINN approach unlike the surrogate model approach or unlike the usual forward
model approach that we have seen so far, lets you solve inverse problems in one shot. it solves
inverse problem as well as forward problem in one shot as | showed you earlier on in this video.
So, the method is extremely powerful and | expect it is going to become even more powerful in
the years to come. So, | hope you found this discussion on physics informed neural networks
over these last three four videos useful. please do let me know in the forum in case you have
some questions since it is a research topic some of what | said might not be particularly or
always clear. So, I will be happy to answer those questions. otherwise, | will see you in the next

week. Thank you.



