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Welcome back. In this video, we are going to look at an introduction to linear regression. If you 

have seen linear regression before, this will just be a repetition for you. But we are going to do this 

in the context of inverse problems, as you know the theme of this week is linear models for inverse 

methods in heat transfer. So, I am just going to repeat a brief context of this problem that I did in 

the previous video also, just quickly, and then we will come back to how linear regression is 

relevant to this. 

 

And then we will look at some details of linear regression here. So, recall this problem that i had 

shown before about the inverse problem in within a slab. So, for example, you could consider this 

slab here and let us say it has a few thermocouples, here we have taken 6 uniformly placed 

thermocouples within the slab. And let us say we know the length of the slab; we also know the 

thermal conductivity and we have some measured temperatures here at these positions at these 

specific positions. 



 

And we want to find out what the temperatures on the left and right are? So, this is as I had labeled 

last time too so we are going to call this T0 and TL. Suppose we do not know what these are this as 

I said in the previous week is an example of an inverse problem. So, this is what we wish to figure 

out and once of course you can figure out T0 and TL you can also figure out the heat transfer. So, 

this 2 let us say we do not know given the thermal conductivity, so that you know from a simple 

basic forward heat transfer. 

 

Now what makes this problem relevant or slightly difficult as we had discussed earlier is the fact 

that the solution is not unique. So, as we had discussed earlier this non-uniqueness is a feature of 

inverse problems. Why is the solution non-unique this should be fairly clear when we look at the 

actual plot. 
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So, if we look at this plot the circles here are actual measured temperatures. So, these circles here 

are measured temperatures. So, these points here, refer to measure temperatures and these x, of 

course, are our locations. So, at these locations we have some specific measure temperatures, but 

we want to figure out what the temperature at the left and what the temperature at the right would 

be and depending on what fit we choose? 

 

Suppose we choose this fit as linear then you get a different measure temperature and if you choose 

this you get a different measure temperature. All of us can see that probably somewhere like this 



is what we would call the visual best fit. So, this one looks like visual best fit. This is what looks 

the best but is that all can we have a more mathematically nicer way of putting this. So, the question 

really is what is a mathematically sound way to define the inverse problem? 

 

Now I am going to just mildly set up the inverse problem in this video and in the next video, we 

will actually discuss a formal way to set all inverse problems. But for this video the purpose is to 

just motivate this inverse problem quickly look at linear regression and see how relevant it is and 

then move on.  So, the purpose here is to just set up the linear regression problem and give you a 

quick solution which you would be familiar with from school days. 

 

Now once we do that, the point here is that the forward model for this problem. So, the forward 

model is going to look like this given left and right temperatures, find temperatures at the 

thermocouples.  So, as I discussed in the previous video too, suppose I give you T 0 and T L can 

you find out T1, T2, T3, T4, T5, T6, which we can and we already saw that the forward model looks 

like T equal to some function of x,  

𝑇 = a + bx, 

which is linear, the explanation was then the previous week. 

 

So now we want to go and do the reverse model, which is given T6 can you find out T0 and TL and 

as we just saw the solution is non-unique. Which one of these fits should I choose? If I choose this, 

I get a different T0 and TL, in this I get different T0 and TL. 
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But notice one fact we are using the physics. where do we use the physics? we use the physics for 

the forward model which we will use in the rest of the video. So, this is a model and as follows the 

physics says temperature, I am going to put a 𝑇̂, here the hat denotes a model. So, temperature is 

something some parameter plus some other parameter times x, i.e.,  

𝑇̂  =  𝑤0  +  𝑤1𝑥 

This information comes from the physics of the problem. So, notice this since this problem is linear 

or this equation is linear, we call this a linear model. 

 

And we will deal with the fact that linear models themselves can be extremely powerful and we 

will deal with those both this week as well as the next week and in the subsequent weeks we will 

see how to move on to non-linear models. Now some of you might think, what happens in case I 

have no direct information from the physics. suppose I have a turbulence problem we know that 

no such formula is forthcoming what do we do in such cases? 

 

So, we have several options one of those options is machine learning which we will be covering 

towards the end of the course. So, the progression is as follows as far as the course is concerned 

linear, then we use linear and non-linear and as you will see we will use these ideas that we have 

developed in non-linear to build machine learning and neural network models. So, this is the 

hierarchy of models as you can see even these are reasonably simple models. we will look at more 

complex models within the final week of this course, I will just give you a brief introduction but 

that will lead you to state of the art. 
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So let us now come to this linear model. If You observe all we have done is as follows. We are 

made a table. So, x here is the location so I have multiple locations x1, x2, I went till x6, but let us 

say in general we go till xm; so, where m is the number of data points. Similarly, I have y, let us 

call this the ground truth. Now this is not a language that is used as a standard language within the 

inverse methods community, but this is a standard language which is used within the machine 

learning computing. 

 

I am going to stick with it because I expect that as you go further and further in your career and 

you use these methods that you will encounter machine learning more and more, as you can see it 

is getting more and more common within science and engineering to see this. So, I am going to 

use this word ground truth, if you wish you can say this is the experimental measurement. So the 

measured temperature which I am going to call y here, y would be any variable that we measure 

but in this specific case, this is temperature that we are measuring. 

 

So, we have let us say y1, y2 so on and so forth up until ym so the mth location has a temperature 

ym. The third thing that we all carry is 𝑦̂. This is what comes from my model. Now suppose my 

model is 𝑤0  + 𝑤1𝑥, for each value of 𝑤0  and 𝑤1 that I guess I will get a different value, for let 

us say if I take it 0.04, even though the truth is somewhere around 12 point something my model 

depending on what values I choose for these parameters it might give something like 9 or it might 

give something as high as 15. 



 

So, this value here 𝑦̂ is the model value or the model prediction. We denote the fact that it is a 

prediction by this hat on top.  So similarly at each point once you know the model parameters, you 

will get some predictions here so these predictions will look like 𝑦1 ̂,   𝑦2 ̂, so on and so forth up 

until 𝑦𝑚 ̂ , alright. So, you can see all that reflected in the picture here. So, for this model, this is 𝑦̂, 

for this model this is 𝑦̂ and this of course is y. 

 

So, in this case this is 𝑦4 ̂ for some model and this is y4 for hat for another model in general y and 

𝑦  ̂will not match. So that is the thing that we can notice. I will write that down in general y is not 

equal to 𝑦̂. But another thing is true in general we want a great model. 
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So, the best model would be such that 𝑦 = ŷ, for all measurements. Now we will see later on in 

this course that this need not actually be the best, but we have an intuitive sense. That in case you 

are able to get your prediction to match the truth. So, remember y is the truth and 𝑦̂ is the prediction, 

in case the 2 match for every single measurement that you make it looks like you have actually got 

a great model. 

 

So, what we want is as follows, we want a model that minimizes the gap between truth and model 

prediction. So, we want some measurement of what the gap between the truth and the model 

prediction is and the way we go ahead and do that is to define a new quantity. So, we define this 

quantity called R prime square (R’2) I will tell you why it is called R prime square (R’2) shortly. 



So, this is a summation of the gap between yi and 𝑦̂𝑖 square, sum of the square divided by 

something I am going to call 𝜎𝑖 square. 

𝑅′2  =  ∑
(𝑦𝑖 − 𝑦̂𝑖)2

𝜎𝑖
2

𝑚

𝑖

 

 

This goes from i = 1 to the number of measurements m. what does this mean? so if we go back 

here to this picture let us take the model below. So, this is let us say model one it looks like a bad 

model, but let us take this model. So, if we take this model 1 and we look at this gap the prediction 

is so much, the temperature so much here there is a gap between the 2 you find the gap square it 

and then divide it by some 𝜎1
2, find this gap square it divided by 𝜎2

2 find this gap so on and so. 
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Now what is 𝜎1 and 𝜎2 so what these are is they are measurements is the variance. I will mention 

this more when we come to the statistics part of this course. So right now, let us just say accuracy 

of the sensors. so going back to our example, if we come here, we made these 6 measurements at 

these 6 points. Now it does not mean that each one of these sensors, some of these might be old, 

some of these might be new, some of these might be more modern, sometimes some of these might 

be more expensive so on and so forth. 

 

So, each one of these would have a different accuracy so in general this one could have an accuracy 

it is like 𝜎1, 𝜎2 or have an error within it as 𝜎1, 𝜎2, … 𝜎6 . So, what we are talking about is 𝜎1 being 



a measurement of what the error or that is what the variance within each sensor is. we will make 

this a little bit more mathematically formal when we go to the statistics portions. 

 

But this account for the fact that not all sensors are equally reliable. Now why does this matter? 

This matters because see I am saying that how a measure of how good or bad our model is 

dependent on the gap. Now let us just say that one was a really good sensor a huge gap here should 

actually be weighted hugely so you want to give a lot of emphasis to that. Whereas a small gap in 

a good measurement device might mean that even that gap could be amplified by a lot or a big gap 

in a measurement device, which is less accurate does not have to be that person is or this sensor 

has always given a lot of error, so maybe the fact that the model and the truth are very different 

need not be given so much emphasis. 

 

So, what the 𝜎 does is gives different emphasis to different sensors. But to start with, we will come 

to what is known as weighted linear regression which gives this different type of emphasis later. 

But for to start with we will assume equally accurate sensors. 

 

So that means we are going to assume 𝜎1 = 𝜎2 … =  𝜎𝑚 =  𝜎. So now we can define one new 

quantity 𝑅2, I will again tell you what this means this is equal to 𝜎2 times 𝑅′2. And that is just 

going to look like  

𝑅2  =  𝜎2𝑅′2  =  ∑(𝑦𝑖 −  𝑦̂𝑖)
2

𝑚

𝑖

 

So, this is simply the sum of squares of the error. This 𝑅2, this R is called residual, R stands for 

residual why have we put square just to emphasize that this is actually a positive quantity. 
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Now there are 2 names, that I am going to use one or the other depending on the notation. So, 

within the inverse Community this R square is typically called S. S stands for sum, as you can 

guess, sum of residuals and this is equal to ∑ (𝑦𝑖 − 𝑦𝑖̂)
2𝑚

𝑖=1 . Now another name which is more 

common within the machine learning community is J. So, J is called the cost function, I am not 

sure why this letter J came I maybe starts with German or something or that sort or the loss 

function. 

 

All that means is what is the cost of the fact that your model and your reality are different? So, J 

is mean. So, the mean measurement is 

𝐽 =  
1

𝑚
 ∑(𝑦𝑖 − 𝑦𝑖̂)

2  

𝑚

𝑖=1

 =  
𝑆

𝑚
 

So, this is basically called the mean squared error. All of you would have seen this at school or 

even at college also sometimes called which as MSE starting standing for mean square error. So, 

J is the cost function or the loss function what do we want? 
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So, our model, so the best model to solve the inverse problem is the one that minimizes J or S, S 

is simply one factor the number of measurements multiplying J. So, the best model is the one that 

minimizes J. Now what are the parameters that we have within J. so this means we need to find w0 

and w1 that minimize J. And remember J is simply the sum of the square of the error,  

𝐽 =  ∑(𝑦𝑖 − 𝑦𝑖̂)
2

𝑚

𝑖=1

 

Now if you look at it only in this form it might look odd, I mean you want to find out w0 and w1 

which minimize this but where are w0 and w1, where exactly is w0, w1 in this expression. 

 

So, let us make that explicit. So, note that w0 and w1 is actually hidden within here. 𝑦𝑖̂ our model 

is 𝑤0  + 𝑤1 𝑥𝑖. what does that mean? Let us go back to our example once again which is why we 

introduce this first we are saying that this here is y this is x this is for example x1, x2, x3 ...  y1, y2, 

y3 … y remember is the truth or the experimental temperature corresponding to this. we should 

have a 𝑦̂ which we will see in the next video. 

 

We will see the actual values here. But suppose I guess that, 𝑤0  =  0, 𝑤1  =  1. Then the model 

would have said 𝑤0  =  0, 𝑤1  =  1, then, 

𝑦̂  =  𝑤0  +  𝑤1 𝑥; 

=  0 +  1 ×  0.01; 

= 0.01; 



So, this will be 0.01 so on and so forth. So, if we take this model, this will become 0.02, 0.03 etc. 

As you can see the gap between y and 𝑦̂ is huge, this is not a great model. But that is just to tell 

you how 𝑦̂ is calculated and 𝑦̂ itself depends fully on w0 and w1.  

 

 

So, 𝑦̂ is a function of w0 and w1. so please remember this as we go forward. So, 𝑦̂ is a function of 

w0 and w1. So, we want to minimize J. I will put the mathematical language for this in the next 

one, but for now let us use a sort of casual language. 
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So J depends on w0 and w1 and it is given as, I should have put, 

𝐽(𝑤0, 𝑤1) =
1

𝑚
∑(𝑦𝑖 − 𝑦𝑖̂)

2

𝑚

𝑖=1

 

  

So, this is equation 1. Whereas,  

𝑦𝑖̂ = 𝑤0 + 𝑤𝑖𝑥𝑖 

This is equation 2. Now when we have 2 variables like this w0 and w1 and we want to minimize J, 

so Min of J is achieved. When, 

𝜕𝐽

𝜕𝑤0
 = 0; 

𝜕𝐽

𝜕𝑤1
 =  0; 



If you do not recall this from your multivariable class then I will be doing this sometime later 

during the course maybe around the seventh or eighth week I will be again kind of deriving or 

giving you some physical intuition. 

 

But at least from one variable calculus you know if there was only one variable then it should be 

𝑑𝐽

𝑑𝑤
 =  0,  if there are 2 variables it turns out that both the partial derivatives have to be 0 like. I 

said the geometric intuition for this I will talk about later once again towards the you know the 

third half of the course or the third part of the course. So, now let us see if we can differentiate this 

equation and get these terms, what are the terms that correspond to 
𝜕𝐽

𝜕𝑤0
 and 

𝜕𝐽

𝜕𝑤1
 or what are the 

equations that correspond to this. 

 

So, 
𝜕𝐽

𝜕𝑤0
, you notice this is J written simply as a function of 𝑦̂.  This is 𝑦̂ written as a function of w0 

and w1. So, we can differentiate this in 2 steps and that turns out to be the easiest way of doing this 

so 
𝜕𝐽

𝜕𝑤0
 you can write as,  

𝜕𝐽

𝜕𝑤0
 =  

𝜕𝐽

𝜕𝑦̂
 

𝜕𝑦̂

𝜕𝑤0
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We want to set this to 0. but let us first start with this equation. Now a convenient thing that we 

can do just to do this 
𝜕𝐽

𝜕𝑦̂
  is to put a factor 2 up front here, it is not very important but typically we 



do that we put a half. So that when we take a derivative you know this 2 and 2 cancel out. So, it is 

a little bit easy. so instead of taking mean square error, we take half of mean square error that is 

just a convenience that we use. 

 

So if we do that what this comes to. So, if you do 
𝜕𝐽

𝜕𝑦̂
 , so I am going to take a simple example and 

then extend it. So let us say instead of having this ∑  𝑚
𝑖=1 , I have a simple equation. so instead of 

this I am just going to do, 

𝐽 =  
1

2
 (𝑦 − 𝑦̂)2 

The ∑ I am going to erase out. And simply going to keep as if it was just (𝑦 − 𝑦̂)2 and I will tell 

you how to extend it to the general case shortly. 

 

So now if I do that then 
𝜕𝐽

𝜕𝑦̂
 simply becomes this square comes down here,  

𝜕𝐽

𝜕𝑦̂
 =  

1

2
 ×  2 (𝑦 −  𝑦̂)(−1) 

So, I hope this is not too complicated for you, but you should be able to do it fairly 

straightforwardly if you wish to do this course for credit. So, this is a simple derivative 
𝜕𝐽

𝜕𝑦̂
 is, 

𝜕𝐽

𝜕𝑦̂
 =  𝑦̂  −  𝑦 

 So, I will write that here,  
𝜕𝐽

𝜕𝑦̂
 =  𝑦̂ –  𝑦. 

 

Now what about 
𝜕𝑦̂

𝜕𝑤0
, remember 𝑦̂ = 𝑤0 + 𝑤1𝑥.  I have dropped the i's as you can see, but it is just 

a convenience so 
𝜕𝑦̂

𝜕𝑤0
 is simply equal to 1. So, we now have this 

𝜕𝐽

𝜕𝑤0
 =  𝑦̂ –  𝑦. Now suppose I 

bring this ∑ back, which I dropped here. So, this would be for just one term so if I am just taking 

the first term this would be 𝑦1̂ − 𝑦1. Another way of looking at this is like this. 
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So, suppose,  

𝐽 =  
1

𝑚
 Σ 𝐽𝑖, 

where 𝐽𝑖  =  
1

2
 (𝑦𝑖 − 𝑦𝑖̂)

2, and I am going to keep a half. All I have done if you look compare the 

expression here and here is I have just added a subscript, the summation is moving. Then I know 

that, 

𝜕𝐽

𝜕𝑤0
 =  

1

𝑚
 Σ 

𝜕𝐽𝑖

𝜕𝑤0
 

And we now know based on our expression so far that, 

𝜕𝐽𝑖

𝜕𝑤0
= 𝑦𝑖̂ − 𝑦𝑖 

Because all I have done is just replace this J with a 𝐽𝑖 and 𝑦̂ with a 𝑦𝑖̂ right. 

 

Once we do this, we basically get, 

𝜕𝐽

𝜕𝑤0
 =  

1

𝑚
 ∑(𝑦𝑖̂ − 𝑦𝑖)

𝑚

𝑖=1

 

 

So, this we will keep as equation 3. 

(Refer Slide Time: 29:22) 



 

Now suppose we do the same thing with 
𝜕𝐽

𝜕𝑤1
, so I will do the same trick again 

𝜕𝐽

𝜕𝑤1
, I am going to 

call it 
𝜕𝐽𝑖

𝜕𝑤1
 or let us drop the i for now, just to keep the whole thing a little bit manageable.  

𝜕𝐽

𝜕𝑤1
 =  

𝜕𝐽

𝜕𝑦̂
 

𝜕𝑦̂

𝜕𝑤1
  

and 
𝜕𝐽

𝜕𝑦̂
 we just calculated as you saw here, 

𝜕𝐽

𝜕𝑦̂
 is simply 𝑦̂ –  𝑦. So, we are going to call this 𝑦̂ –  𝑦 

and 𝑦̂  was our model which was 𝑤0 + 𝑤1𝑥. So, 
𝜕𝑦̂

𝜕𝑤1
 is equal to this derivative the derivative of 

this with respect to w1 this is simply x. 
𝜕𝑦̂

𝜕𝑤1
 =  𝑥. 

 

So, this is going to be x. So, we can now write this down as, 

𝜕𝐽

𝜕𝑤1
= (𝑦̂ − 𝑦)𝑥 

except, when we actually do this, just like the last time you will get a summation. And get a 

summation. So,  

𝜕𝐽

𝜕𝑤1
=

1

𝑚
 ∑(𝑦𝑖̂ − 𝑦𝑖)𝑥𝑖

𝑚

𝑖=1

 

So, this calculation here was just for one sensor this is the full calculation so let us call this equation 

4. So, you can notice equation 3 here is for 
𝜕𝐽

𝜕𝑤0
, equation 4 here is for 

𝜕𝐽

𝜕𝑤1
. 
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For minimum J, we need, 

𝜕𝐽

𝜕𝑤0
 =  0; 

𝜕𝐽

𝜕𝑤1
 = 0;  

So let us put these 2 equations in play. So, this first condition will say ∑, I am going to eliminate 

the divided by m, 

∑(yî − yi) = 0 

Let us call this equation 5. And the next equation is going to be, 

∑(yî − yi)xi = 0 

This is equation 6. So, these are the 2 equations. Now by the time you come to these 2 equations 

we might forget. What it is that we are looking for? 
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So, we should remember what it is that we are looking for in fact let us retain the m so that might 

make things a little bit more convenient for us in a little bit of time. So, these are the 2 equations 

and we want to solve these 2 equations for what were our unknowns. our unknowns are w0 and 

w1, that satisfy equations 5 and 6. That is really what we are looking for all right. 

 

So, at this point you might think what is the meaning of these 2 equations? So, what is the meaning 

of equations 5 and 6 and how do we proceed in solving for w0 and w1? So, let us look at that in a 

short way. what does this mean? so what this first thing means? This simply means that the average 

error of the best model is 0. This is what this equation means. you notice this is the error and that 

is why I retain the m, what this says is the average error of this model is 0. 

 

This one says that the weighted average by x is also 0. This one is a harder meaning, but at least 

let us look at the physical meaning of the first term here if you notice is look is looking like this. 

So, suppose this middle red line is our model, you will see that somewhere the error is positive 

and at the other places the error is negative, whereas the bad models are all on one side. So at least 

we have a physical intuition that a good model should go on both sides of the truth and that is the 

intuition, that this equation here is re-emphasizing. 

 

This on the other hand is a little bit harder to interpret and we will see that in the next video so let 

us see how to solve these 2 equations. Remember we are looking for w0 and w1. 
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So, equation 1 is, 

1

m
 ∑(w0  +  w1xi - yi)  = 0 

Remember yi is the truth, xi or the actual temperature, this is the location of the sensor and these 2 

are the parameters we are trying to solve for. it is useful to just remember what we are solving for 

throughout. So, this is 0 this is equation 5 let us just continue with simplifying this ∑  m
i=1 , w0 is a 

constant with m or constant with i, the only thing that depends on i here is xi as well as yi. 

 

So, now if we look at the first term the first term simply is ∑ w0, which is a constant which you 

can take out. So, this is w0 times ∑  m
i=1 , I am just doing it term by term this just becomes 1, the 

whole thing divided by m. I am going to take each term then w1 terms times ∑ xi
m
i=1 , the whole 

thing divided by m and the final term is minus ∑ yi
m
i=1 . Let us just assume that 1 to m is 0. 

w0

m
 ∑ 1

m

i=1

 + 
w1

m
 ∑ xi

m

i=1

 -  
1

m
  ∑ yi

m

i=1

 =  0 

 

Now let us look at these terms one by one, again, in the first term is simply ∑  m
i=1 w0,  is simply 

m. so, m by m, so that is 1. This is w0 + w1, let us use some terminology. This is the average value 

so if you see, ∑ xi
m
i=1 , this is the average value of xi. So, the average location across the domain. 

So, we are going to denote this average by a bar, so 𝑥̅ denotes average value of x over the domain. 



So w1 times this term becomes 𝑥̅ minus this term, now you can see is the average value of y, so 

we will denote this by 𝑦̅. 

 

So now you have an equation I am going to write this compactly, 

w0 + w1𝑥̅ − 𝑦̅ = 0 

w0 + w1𝑥̅ = 𝑦̅ 

So, notice this this is one equation notice how nice it looks also. Because it tells you at the average 

location, I should accurately predict the average output or in this case the average temperature so 

this equation actually has a physical meaning so this let us call this equation 7. Now let us simplify 

the next equation which was equation 6 so equation 6 is here this equation so I am going to write 

that down. 

(Refer Slide Time: 38:12) 

 

1

m
 ∑(yî − yi)xi = 0 

So, you can see it is exactly the same as the previous equation but like I said it has a weighted 

weighting here xi, so we will open this up, 

yî  =  
1

m
 ∑(w0  +  w1xi - yi)xi 

I am going to drop the 
1

m
, just for keeping our notation a little bit compact. So same thing the first 

term is w0 ∑ 1 the whole divided by m it is, I made a mistake here ∑ xi, so w0 times xi, so w0 can 

be taken out. So 
w0

m
 ∑ xi. 



 

 

The next term is 
w1

m
 ∑ xi

2 and the final term is 
1

m
 ∑ xiyi this whole thing equal to 0.   

w0

m
 ∑ xi  +  

w1

m
 ∑ xi

2  -  
1

m
 ∑ xiyi  =  0 

So now let us do the same interpretation that we did the last time and write this down. So, the first 

term becomes w0 times this combination of terms, so that is simply 𝑥̅, you can say∑ xi divided by 

the average value of x, + w1 times now this is the average value of x square. 

 

So, the square of the location is what we are averaging at this point so this is x2̅̅ ̅. Now it is important 

to note something here this is a mistake that students often make or people often make. x2̅̅ ̅.  is not 

the same as 𝑥̅2 what is the difference?  x2̅̅ ̅  is the average of the squares and 𝑥̅2 is the square of the 

average. So, for example if you have the numbers 3 and 5 then x2̅̅ ̅ would be 32 + 52 by 2 so that is 

9 + 25 by 2, 34 by 2, so 17.  

 

Now 𝑥̅2 is, what is 𝑥̅? 𝑥̅ is 4, the average of this is 4. So, this is 42, so this is 16. So, you can notice 

x2̅̅ ̅  is not the same as 𝑥̅2. So, what do we have in this term? This is x2 average so that is x2̅̅ ̅  . so 

please do notice that it is easy to get confused by this term quite easily. So, you see this term here 

this is average of xi yi so this is 𝑥𝑦̅̅ ̅, 

w0𝑥̅ + w1x2̅̅ ̅ − 𝑥𝑦̅̅ ̅ = 0 

w0𝑥̅ + w1x2̅̅ ̅ = 𝑥𝑦̅̅ ̅ 
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So again, the same thing holds true here too also note that 𝑥𝑦̅̅ ̅is not the same as 𝑥̅𝑦̅, this is the 

average of the product and this is the product of the average. These 2 are not the same and we will 

see this in greater detail when we come to the probability portions of this course. So we can put 

this together and write an equation w0𝑥̅ + w1x2̅̅ ̅ = 𝑥𝑦̅̅ ̅. So this will call equation 8 just for your 

recollection equation 7 was w0 + w1𝑥̅ = 𝑦̅, this was equation 7. 

 

I am just rewriting here so that it sits on the same page for you for easy reference. Now notice this 

again, this is a useful thing to remember. this is called taking moments unfortunately. we would 

not have the time to discuss this in great details in the course. This basic equation if you remember 

you can generate this equation fairly easily so this equation is just w0 + w1𝑥̅ = 𝑦̅. All I am saying 

is, this is coming from the model remember. 

 

So, this comes from the model. So, what it is saying is 𝑦̂ at an average location should be equal to 

the ground truth averaged. So, from there if you just multiply each term notionally by 𝑥̅ or you 

first multiply each term by x and take an average, you get this equation. So, you can see 𝑦̅ 

becomes 𝑥𝑦̅̅ ̅, 𝑥̅ becomes x2̅̅ ̅ and 1 becomes 𝑥̅. Now we have 2 equations and two unknowns and 

we can solve this to obtain w0 and w1, it is a fairly easy to do that so the way to solve this is. Let 

us say we multiply we eliminate w0 by multiplying equation 7 by 𝑥̅ and subtracting out equation 

8. So, 𝑥̅ multiplied by equation 7 - equation 8. 
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So, what that gives you is, 

w0𝑥̅ + w1𝑥̅2 = 𝑥̅𝑦̅ 

This is the right-hand side and now you subtract out this equation terms, which are w0𝑥̅ + w1𝑥̅2. 

So, this is where the distinction between 𝑥̅2 and x2̅̅ ̅ becomes important. On the right-hand side, 

you subtract out 𝑥𝑦̅̅ ̅. So, these 2 terms cancel out. So, you get, 

w1[𝑥̅2 - 𝑥2̅̅ ̅ ]  =  𝑥̅𝑦̅ - 𝑥𝑦̅̅ ̅ 

(Refer Slide Time: 45:29) 

 



So, you can now write w1 equal to, I am going to reverse the signs, because that is the usual way 

in which it is written, 

w1  =  
𝑥𝑦̅̅ ̅ − 𝑥̅𝑦̅

x2̅̅ ̅ − 𝑥̅2
 

So, this is the analytical solution for w1. of course, we need w0 also and we know that w0 + w1 𝑥̅ = 

y̅. so, this gives us, 

w0 = 𝑦̅ − w1𝑥̅ 

and you can write this in a convenient way, w0 becomes 𝑥 ̅𝑥𝑦̅̅ ̅ − 𝑦̅ x2̅̅ ̅̅ , I will leave the derivation 

up to you so fairly straightforward derivation, divided by x2̅̅ ̅ − 𝑥̅2. 

w0  =  
𝑥 ̅𝑥𝑦̅̅ ̅ − 𝑦̅ x2̅̅ ̅̅

x2̅̅ ̅ − 𝑥̅2
 

 

So, this is the analytical expression for w0. so put together, these are the coefficients of the linear 

fit of a linear model in one variable. 
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So, this very specification here tells you a few things. we have automatic questions that will come 

from here. What happens if my model is non-linear or let us say it is quadratic? So, when would it 

be quadratic for example in case, I have something with heat addition.  So, you could have instead 

of a linear model, you could have a quadratic model there what happens in that case?  What 

happens if it is cubic, quartet etc.? 

 



 

What happens in general if it is non-linear. we were able to find out this formula in case of w0 and 

w1 what if it is non-linear and it is very messy then what do we do?  The next question is instead 

of one variable because I was doing in only one dimension what happens if there are multiple 

variables? so what we do for such cases? Final question that we have is what is the accuracy of 

this model or of this process? 

 

How do we know is this the best that we can do? can we do something else maybe we fit a line 

here, just because physics said it was a line what if we fit a slightly different model maybe physics 

is something else. So, all these questions we will answer in the future videos within this week. So, 

in this video all we saw was 2 simple expressions for w0 and w1 usually these equations are written 

a slightly different form which I will discuss in the next video. 

 

But more importantly in the next video we will also start with the quadratic model. we will also 

look at how you can generalize the same process, if you have multiple variables so thank you that 

is it for this video. 

 


