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We are in week eleven of inverse methods in heat transfer. in the last couple of videos, we 

discussed a basic introduction to physics informed neural networks also known as PINNs. I had 

discussed various aspects of this particularly I had given you a sort of semi-intuitive explanation 

in the previous video. but we did leave out a few things I did not talk about how we apply 

specific boundary conditions nor did we discuss how we solve inverse problems using PINNs 

nor did we really talk about how we can incorporate additional data. so can we do with a mix 

of experimental data as well as existing neural existing physics information can we combine all 

these and we will look at these three aspects within this video. 

 

So, what we saw in the last couple of videos was given a PDE or an ODE, so let us take we 

have an ode of the form 
d2T

dx2  equal to let me just make up something  sin (x). So, let us say this 

is an example ode I am going to call this to be of the form L(x) = R(x), so left hand side of x is 

some right-hand side of x now more precisely L(x) is an operator which is acting on T and on 

the right-hand side you have a function which could be a function of T or it could be a function 

of x. If you want to be even more precise the reason, I am doing it in three steps is when we 



write it this way it can get confusing so you could have a function of T,  
dT

dx
, 

d2T

dx2
 and you have 

something on the right-hand side let us call this some R(x) now all put together. 

 

You basically do not write it in the form some left hand side equal to some right-hand side. but 

you transform this to the form 
d2T

dx2
 just like we did with newtons method something equal to 

zero okay. So, we will write this as 
d2T

dx2  - sin(x) = 0 and more precisely from here and the 

equivalent form from here would be something like ℵ(T(x), x) = 0, what this N means 

ultimately, we want to talk about Navier Stokes equations or some thermal equation. but this is 

some operator an operator means there could be a derivative or the second order of the derivative 

like here which acts on t and you have some terms that depend on x and at the end this is equal 

to zero.  

 

So, this should remind you of What we did with Newton Raphson also okay. now the question 

is how do you transfer this equation which is simply a PDE or an ODE into an optimization 

problem okay? now obviously we already looked at a little bit of this in the last couple of videos 

but before we move further we know that in addition to this we have some boundary conditions 

so the boundary conditions could be let us just say T(0)=0 and T(1)=15 and let me change this 

also to some more identifiable value let us say it is 20 and right hand side is 15 and x belongs 

to the domain zero one okay so this could be a slab could be a temperature problem or t could 

be any other variable I am just making up some ODE or PDE okay. 

 

Now what we know is all We do is we take this domain zero to one and decide on getting some 

physics data okay now just imagine a parallel problem where you are doing some housing price 

prediction or something of that sort if we are doing some prediction of some engineering 

problem or we are trying to predict some stock price, we would sample it at a few points. 

similarly, here we are sampling the physics at few points let us say we are sampling it at m 

points within the domain okay and these m points could be let us say just for the sake of 

argument let me just give some value let us say thirty-five points just so that we have some 

unique number here so m equal to thirty-five points I am sampling one two three four etcetera 

up till thirty-five. 
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Now add these thirty-five these we will call the ode or the physics points or if it is a PDE we 

will call it the PDE box okay so these points serve only one purpose. We are going to take the 

physics data from here and that is going to go into the loss function as J physics or typically in 

the literature we call it JPDE or JODE or J differential equation so let us just call it JPDE here so 

just I am going to call it JPDE although this is actually an ordinary differential equation so what 

is JPDE? JPDE is whatever you predicted so here obviously just like we did before we need a 

hypothesis function and the hypothesis function is 𝑇̂ some function that we decide on minus 

sin(x) at these points whichever points we have these squared and summed up and if you wish 

we can have a one by two factor or not and one by two the number of points the summation is 

from i equal to one to the number of points.  

 

This denotes the total difference or square difference between our function 𝑇̂ and the actual 

physics of the problem so actual physics of the problem says this should be exactly zero whereas 

our 𝑇̂ suppose I make up a function 𝑇̂ is some function of w0 and w1 . let us say w0 + w1x if I 

plug that in here then I will get 
d2T

dx2  =  0 because it is a linear function that will get zero and 

that will not match this so you want to say that okay w zero plus w one x is not a great function 

now you might add something else let us say w2ex + w3e2x + w4sin 2x+. .. so you might if 

may add all these other hypothesis functions  

 

We plug all the all of those in here and just compare What the 
d2T

dx2
 does versus what it should 

do which is equal to signs. So, once we do that, we actually have our hypothesis function and 

we have our JPDE individually at this i okay. now of course instead of 𝑇̂ being this 𝑇̂ could also 



be a neural network. So, it could be a neural network and that would also give some hypothesis 

function which depends on w so it really does not matter what we use here okay. this is all fine 

but there is no way that any t we choose like that will satisfy these two conditions. 
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So, just like we had a JPDE we should have a J boundary condition and if it is an initial value 

problem, we should have a J initial condition I will show you how to do a J boundary condition 

right now. So, J boundary condition is going to be let us first take the left boundary. So, the left 

boundary says that 𝑇̂ should be I took some value twenty. so of course what you want is to say 

that 𝑇̂(0)-20 = 0 so what we do is JBC from the left will be you actually find out what 𝑇̂(0) is 

so remember you have a hypothesis function which is a neural network this neural network 

would take in x, let me call this NN and it will give out a T. so neural network simply is a 

substitute for what this function T is okay so instead of saying T(x) I can say neural network 

the value at x equal to zero it will give a value of course I give an input will give a value out it 

should be twenty. 

 

But I cannot match this exactly you know that neural networks will not in general match this 

exactly so we will add a loss which is (𝑇̂(0)-20) 2 okay now similarly you can have a JBC which 

is at the right and our right boundary condition was that t of one equal to i think it was fifteen 

yes T(1) = 15. So, I will simply say that JBC at the right is (𝑇̂(1)-15) 2, how does this help? 

(Refer Slide Time: 10:30) 



 

We will basically say a simple thing Jtotal or JPINN is JPDE plus J at the boundary condition so 

which comes to if you see one by two 1 by times however the number of points were how many 

ever were the number of points so let us say there are thirty five points so then m will be thirty 

five then we will simply sum up d square T-hat dx square minus sine x the whole square plus t 

of T-hat of zero minus twenty square plus one by two you have a half everywhere T-hat at one 

minus fifteen square.  

 

So, this then some people put an additional factor of one by two for just the left and right 

boundary conditions this total loss is the PINN loss okay so the PINN loss is made up of the 

PDE loss and the boundary condition what does this do so when you try to minimize the PINN 

loss it will be ideally minimized then this is zero this is zero and this is 0 zero and the ideal 

minimization will be obviously d square t dx square equal to sine x that is thirty five 35 points 

and t at the left is exactly twenty and t at the right is exactly fifteen. 
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Unfortunately, obviously in practice ideally J total When minimized, implies that BC and 

equation are satisfied exactly. but this minimum but does not happen in practice okay so 

typically you will have more problems than this you will not be able to satisfy these exactly. 

that is because you will have more equations than unknowns, because we will have typically 

more data points compared to the number of parameters. So, this is an important thing to 

consider while doing PINNs this does not get often discussed. the number of parameters and 

PINNs in the neural network that you use should be fewer than the number of points where we 

apply these conditions. just so that it is effectively a least square solution that occurs. but even 

though this does not occur we tend to get a least square solution but a good solution.  

 

Now this idea of adding JPDE plus JBC was a particular contribution of the Raissi and Karniadakis 

twenty nineteen paper I will shortly show it to you. there was another idea which was by Lagaris 

this is the original idea from nineteen ninety-seven. this idea was that J is just equal to JPDE but 

boundary conditions are imposed exactly. now how do we do that. there are various ways of 

doing it let me give you a simple example. 
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The example would be something like you satisfy let me just show you suppose I am just giving 

you a simple example suppose the BCs were t of zero is zero and t of one equal to zero then the 

Lagaris approach is T-hat equal to neural network of x multiplied by x into x minus one now 

how does this help?  

 

This helps in making the solution arbitrary so that you have number of parameters so all the 

parameters are here this satisfies the boundary conditions how so when you put t of one you get 

x minus one so this will be zero when you put t of this is x equal to zero then still it will be zero. 

everywhere else it does not have to be zero and you will basically satisfy the parameters. So, 

you basically manipulate the expression for the neural network so that the boundary conditions 

are satisfied exactly.  

 

On the other hand, in the Raissi approach both PDE which is the physics as well as the boundary 

conditions are satisfied in the least square sense the Raissi approach has a few disadvantages of 

course the boundary condition is not satisfied exactly and you need to play with certain 

parameters.  

 

I am not discussing that here maybe I will discuss it next week if time permits but it has the 

major advantage that can be used to include experimental data in forward simulations, turns out 

the same thing also helps in inverse simulations. now I will show how this is possible in a short 

while but for now I just would like you to remember the following things the temperature or 

any variable we have is basically represented by a neural network in the Lagaris approach we 

add some extra terms just so that the boundary condition is satisfied otherwise we have very 



simple and very beautiful form which is there in the Raissi and Karniadakis form which is you 

just add the PDE loss to the boundary condition loss and it just works in Practical problems.  

 

So, what I would like you to what I would like you to see now is some excerpts out of these two 

seminal papers. I will show you some of these results from the papers and then we will come 

back and discuss some extra important aspects of these. So, I will show you these in the next 

video. 

 


