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Welcome back we are in week eleven of inverse methods in heat transfer. In the last video I 

gave you a preliminary explanation of what PINNs are and within that I had just told you about 

how the loss function for the ODE can be used as ODE or PDE even though I did not talk about 

PDEs there, can be used as a substitute of having ground truth. in this video I would like to give 

you a simpler explanation that does not exist within the literature but I would like to give you a 

simple explanation and a sort of intuitive explanation for how PINNs came about okay and once 

you understand this video well enough, I think you will be able to see the last video also in a 

better light and also the upcoming videos within this week clearly. 

 

So let us go back to a simple problem or even a slightly complicated problem. so let us take a 

2D problem and let us say we are solving 
𝜕2T

𝜕x2  = 0 which means 
𝜕2T

𝜕x2  +  
𝜕2T

𝜕y2  = 0. We know that 

the solution given certain boundary conditions is given by some T(x, y), this is the solution so 

we know this already unfortunately we cannot find it analytically okay. So, the problem of 

course is no analytical solution if you were doing CFD the way to solve using CFD would be 

exactly what I told you before split this into some mesh, read each one of these as an independent 



unknown, each one of these points as an independent unknown and then turn this into difference 

equation approximated and then solve it.  

 

We are going to take a slightly different approach now okay so what I call this slightly more 

intuitive order simpler approach, which will directly lead to PINNs once we use neural 

networks. so what I am going to do is I am going to assume and this should remind you of the 

forward models that we did we are going to assume some solution 𝑇̂(𝑥, 𝑦) which is approximate 

okay remember it is not exact to T(x, y) so in this sense this is our hypothesis okay now not 

only that I am going to give as I would ask you to recollect what I had talked about earlier in 

machine learning I am going to give a form that this approximation takes. Except now I am 

going to take a very simple form last time I took a neural network we cannot write or make head 

or tail of what it is doing.  

 

But here I am going to assume T(x, y) =  a + bx + cx2 + dy + ey2 + fxy. Now instead of that 

having a, b, c, d, I am going to write T(x, y) =  w0 + w1x + w2x2 + w3y + w4y2 + w5xy. 

Now this is a function this is obviously a function. 
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Now the number of unknowns here are six unknowns. we have w0 through w5 which are not 

known which would mean we need six equations to solve them okay. Now if you need six 

equations to solve them there are several ways of doing so one method could have been you 

give you actually have an experiment and you make let us say six measurements so let us call 

these points one two three four five six.  

 



To solve for w0 through w5 so remember the moment you solve for w0 through w5 you know 

the temperature at every point here because I have written temperature as an expression okay 

so if I solve for w0 through w5 you can use method one, which is give six measurements of 

temperatures. So, the moment I give six measurements if temperatures what happens I will have 

six equations. 
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How so? for example let us say that at this point this point let us say the source location x1, y1 

the temperature was measured to be T1 either through some prior simulation or through an 

experiment you know this so you will say that at x1, y1 temperature was T1 so this will say w0 +

w1x + w2x2 + w3y + w4y2 + w5xy =  T1. 

 

You can write equations such as this in general you will have w0 + w1xi + w2xi
2 + w3yi +

w4yi
2 + w5xiyi  =  Ti. If you write this as a matrix the unknowns remember are w0, w1, w2, 

w3, w4, w5 on the right hand side you will have T1 through T6 and here you will have x1, x1
2, 

y1, y1
2 sorry there will be a constant term which is one then x1, x1

2, y1, y1
2 and then x1y1 

similarly 1 x2, x2
2 so on and so forth until x2y2 so you have six equations, six unknowns solve 

and there you have your temperatures okay so sorry there you have w0 to be w5.  

 

But suppose I do not have these I do not have T1, T2, T3, T4, T5, T6, now this would be comparable 

to usual NN solutions or the surrogate method okay I will explain the connection later on, but 

this is similar to the surrogate solution. 
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But there is an alternate method so let me call this the second method let us give a name to 

method one which is through temperature measurement. Now let us look at method two method 

two says impose the PDE now even though I do not know the temperature at this point I do have 

one piece of information what is that I know this, I know that 
𝜕2T

𝜕x2  +  
𝜕2T

𝜕y2  = 0 at these points 

what does that lead to okay impose the PDE how do I impose the PDE I already know the 

temperature expression w zero plus etcetera up till w five xy then I can find out what del square 

t del x square is.  

 

Now 
𝜕2T

𝜕x2 let us write this out just for our reference 
𝜕2T

𝜕x2 will have 2w2 okay this term this term 

and all the other terms actually go to zero okay so w zero w one did take simply differentiate 

the expression for t and you get this expression. what about 
𝜕2T

𝜕y2? 
𝜕2T

𝜕y2  will give you 2w4 so we 

now get the equation that w2 + w4 = 0. Now unfortunately for the function that I took if our 

𝜕2T

𝜕x2  +  
𝜕2T

𝜕y2  = 0  I will get this value for every point  

 

This will tell me that my hypothesis was not complex enough or complicated enough. So, I can 

modify my hypothesis. so let me use a simpler function something like w0ex + w1ey + w2exy 

etcetera and let us say I take some w five terms so when I take t of xy is something of this sort 

and I do 
𝜕2T

𝜕x2   or 
𝜕2T

𝜕x2, this will give me w0ex plus let us say in this case w2yexy so on and so forth 

I will have an analytical expression. 
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Now once again say I have only five or six unknowns take six measurements. These 

measurements all say the same thing 
𝜕2T

𝜕x2  +  
𝜕2T

𝜕y2  = 0. so for example I could get something like 

w0ex1 + w2y1ex1y1+. . . +2w5x1. .. then if you differentiate it with respect to x you will have 

something like two x plus some derivative due to y is equal to zero once you write this this will 

again look like a matrix except this will be a little bit more complicated this will represent 
𝜕2T

𝜕x2  +

 
𝜕2T

𝜕y2 all the coefficients like ex1 , ey1 , ex1y1 so on and so forth and you will have w0, w1, w5 equal 

to on the right hand side will be zero zero zero zero zero zero okay.  

 

Once again this can be solved, I am explicitly avoiding boundary conditions which I will talk 

about later can be solved using simple linear solutions. This gives us w zero through w five it 

is the same as before. Now notice what we have done here is we do not need, this is completely 

physics informed, no need for t measurements. Now why is there no need for t measurements? 

All we did is we have simply said that at each of these six points the physics of the problem 

which is 𝜕2T equal to zero is imposed and all we had was a hypothesis function, it could be 

quadratic like this it turns out it is a bad function because nothing is left. 

(Refer Slide Time: 13:53) 



 

You can now add cubic quartic power four sine cos whatever you have or we could also use 

neural networks. So, if I use six measurements and the only number of parameters in my neural 

Network are six you could solve it except there is one difference this is a linear system, because 

my hypothesis was linear in w, whereas a neural network is nonlinear as we have seen in the 

last three four weeks in w. So instead of getting a linear system we will get a nonlinear system 

of equations to solve. Now again you can solve this using gauss newton or you can use 

Levenberg Marquardt or you can use gradient descent. Now the question is this should we 

always have number of points equal to number of weights okay. So, for example let us go back 

to the very first case that we took. we took six measurements here one two three four five six 

are these six thermocouple locations let us say and we also had exactly six unknowns w zero 

through w five.  

 

Is it required that the number of thermocouple measurements should be exactly the same as the 

number of unknowns? The answer is no because we have been doing this throughout this course. 

what do we do? If let us say I have only this but I have more points let us say I keep on adding 

more thermocouple measurements and I go till let us say hundred thermocouples now, what do 

I do? I do not have to increase the complexity of my function all I need to do is instead of 

solving this system of equations I solve the equation in least square sets why is that? so let us 

come back here. 
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I am going to revisit I will call this method three which is polynomial with more measurements 

more data than unknowns where we see this before in the slab problem in the slab problem, we 

had six sensors but our 𝑇̂ was simply w0 + w1x only two unknowns. so instead of trying to 

satisfy every single thing all I say is okay you have a prediction, this is the prediction, you try 

to minimize T-𝑇̂ square at all these points are equal to one to six one by two times number of 

points minimize J. so notice how this comes naturally, let us say the number of points was only 

two like I made only two measurements, then I have one exact value of w0 and w1, if I now 

make three measurements it is not always certain that the same w0 and w1 will satisfy these 

three and all we do is okay instead of satisfying these three I will have something that goes in 

the middle.  

 

So, let us say temperature like this you have something of this sort, this will be my hypothesis 

function. So, if I have more data than the number of unknowns you simply do a least square. 
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We can do the same thing with method four. method four suppose I have a neural network and 

I have hundred data points once again, one two three up till hundred and let us say number of 

weights in the neural network or in the hypothesis function I chose was let us say only fifty, 

then if it was exactly fifty and exactly fifty here I would have if data equal to weights plus we 

have unique solution in fact this as you know is the nature of inverse problems but if data is 

greater than weights we have an ill posed problem and all we need to do is use least square.  

 

So, instead of solving the nonlinear system of equations exactly all you need to do is to minimize 

J PDE. J PDE simply says 
𝜕2T

𝜕x2 whatever expression we get plus 
𝜕2T

𝜕y2 instead of being zero, I will 

minimize the square of this summed over all the individual points. this is a very simple idea 

okay so J PDE simply minimizes the sum of these squares over how many other points this is 

so this is hundred then basically get optimal w’s okay. I will re-emphasize this point notice that 

if I had exactly fifty points there is no optimal w the thing that minimizes this will be such that 

at each point, I can actually satisfy this exactly equal to zero.  

 

But the moment I increase the data points you have a regularization effect you add more and 

more points you actually have multiple Choices of w which would have satisfied this but what 

you want to do is to find that which minimizes [
𝜕2T

𝜕x2  +  
𝜕2T

𝜕y2]2. now this actually gives you a root 

breaker for what we were doing in the neural network method whenever you get confused about 

using a neural network you can think of a normal function you can just think of T(x, y) or 

T(x, y, z) is an actual function like w zero plus w one sine x plus w two it is some hypothesis 

function it really does not matter what that function is once you give that since we know that 



neural networks can approximate everything rather than giving functions handcrafted functions 

like this we give a general neural network.  

 

So that once We solve w zero w one and w two we know it can approximate the function that 

we are looking for okay now I hope that this made the idea behind PINNs a little bit clearer in 

the next video we will see how we can actually incorporate boundary conditions in two different 

ways one is the one that was pioneered by Lagaris and the next is what was the modification by 

Raissi and we will see how the modification by Raissi actually enables us to solve inverse 

problems very elegantly. So, I will see you in the next video thank you. 

 


