
Inverse Methods in Heat Transfer

Prof. Balaji Srinivasan

Department of Mechanical Engineering

Indian Institute of Technology – Madras

Lecture – 57

Physics Informed Neural Networks - Introduction

(Refer Slide Time: 00:19)

Welcome back to week eleven of inverse methods in heat transfer. In this video we will be

looking at an important modern technique called physics informed neural networks. Pioneering

work in physics informed neural networks has been primarily done by the crunch group in

brown headed by professor George Karniadakis. But before this there was actually a very

similar in my opinion paper by Lagaris et al this is sometime in nineteen nineties. I think the

paper that I am going to show is Lagaris 1997. so, what I would like to do is to think of physics

informed neural networks also called now called PINNs in two steps. first is PINNs for forward

problems and then PINNs for inverse problems.

In my opinion it is in the solution for inverse problems that PINNs really shine in forward

problems you will see that they offer a very nice alternative to traditional techniques the CFD

technique that I introduced you to in the last week. But really speaking their major power comes

in inverse problems where you do not need any large-scale simulations as I had shown you for

the case of surrogate models in the last video. So, this is a very interesting idea like I said first

introduced by Lagaris et al I will show you the paper. But let me first briefly introduce you to

the idea okay so the idea is this suppose you have any ODE or PDE okay. So, I will take an

example ODE or PDE, so let us take some ordinary differential equation let us say we have the

equation
d2T

dx2
 equal to some source some let us say some volumetric heat generation, in this case

let me give you an example let us say volumetric generation looks like x2 + 3x + 1.

(Refer Slide Time: 02:38)

So, the way you would solve it using CFD would be you would make a mesh and you will take

these points in the mesh some point some random points. so let us say in this case ∆x let us say

this goes from x = 0 to x = 1 and this is x = 0.2, 0.4, 0.7 let me make it uniform and add one

more point here so point two, point four, point six, point eight and one so then you say something

of the sort that this is i equal to one two three these are grid points five six then you will have a

relation such that
Ti+1-2Ti+Ti-1

(∆x)2 = xi
2 + 3xi + 1.

So, this if you see the right hand side is known the left hand side basically becomes a matrix

and you will have something like T1, T2 up till T6 equal to some RHS so we will have some

matrices which will look like one minus two one one minus two one and to get right diagonal

matrix in case this looks too fasting please do take a look at a basic numerical methods course

my point here is traditional CFD solves for these points separately. So, each of these solutions

is a separate solution and you solve for that. now here is the PINN idea the PINN idea is this I

know that T the solution T is a function particularly T here in this ODE is a function of x okay,

Now the way we solve CFD was not to assume that it is a function of x or at least not explicitly

there are implicit assumptions here in terms of piecewise linear piecewise quadratic etcetera.

So, you take these six as separate unknowns okay you have to of course give boundary

conditions which I am skipping briefly for now I will come back to the boundary conditions

issue very shortly. but for now, let us just ignore the boundary conditions of the problem, but if

we just look at these separate solutions you actually get separate solutions for CFD at least six

patches. now there is a different method once I know that T is a function T(x), I can say

approximate T with a neural network what does that mean?

(Refer Slide Time: 05:38)

It means here is a diagram I take x, this is the input. There is some neural network here for

example there could be one hidden layer multiple hidden layers, we have already seen these

examples and the output here is T(x). Now notice even though as I have said it multiple times

even though I draw this as a diagram every diagram you would have seen this in the exercise

also is equivalent to an analytical function.

For example, if I take x just have one neuron here which is sigmoid and this is w1 and I have a

linear output here y or let us call this T just to be consistent 𝑇̂ and this is w2 then this will say

that 𝑇̂ = 𝜎(w1𝑥), now this layer will multiply, this multiplied by w2 so this then is a function

okay so 𝑇̂(x) is also a function.

This also is a function except it is a complicated function. Now how does that help us. once I

know that it is a function, the way I do it is as follows.

(Refer Slide Time: 07:06)

You assume some architecture means number of neurons, number of layers etcetera, assume

some architecture for T(x) so it could be like something of this sort x, T(x) okay etcetera okay

here there should not be any layers but anyway. so then use or find
d2T

dx2, how do I find out
d2T

dx2?

once I know this this can be done through backprop or what is known as automatic

differentiation which we saw in the last video. So, for a given T(x) you can find out what
d2T

dx2 is

and then solve let me show this a little bit better.

Then effectively solve
d2T

dx2 equal to some RHS let us call this f(x), by minimizing ∑
d2T

dx2 -f(x) all

of these calculated at i over lots of points.

(Refer Slide Time: 09:07)

So, the way this works is as follows the same domain I take lots of points now unlike CFD these

points have a different purpose. They do not have to be uniform. These are treated basically as

data points, where I will show you the brilliance of this when it is applied to inverse problems

later on. But these do not have to be uniform you can basically treat these as data points. so let

us say we have one two three n data points okay. now the general process is as follows, the

process is making a NN approximation what do I mean by making NN approximation?

Choose So let us say I can choose number of layers and neurons so let us say for the differential

equation that I have shown I make a simple choice.

(Refer Slide Time: 10:26)

So, for example I choose one 1 hidden layer plus five neurons, if I make that choice, so this is

what it will look like x then one two three four five and then T okay. now what is the problem

here? the problem here is we do not have these weights so w one one w one two etcetera with

unknown weights okay. so let us say our weights are also unknown okay so we have a whole

bunch of weights here let us say we have weights and biases, but let us say just weight so let us

say in this case we have ten unknown weights okay. So, what do we do we do the usual thing

that we do with neural networks guess for these unknown weights.

This also looks simply. So, we just guess for these weights alright. So, we have an initial guess.

now we need to improve, do the forward pass okay. So, we do the forward pass how many times

n times, let us say I have hundred data points so for each x location okay, so if you have a

domain going from zero to one and you have hundred locations randomly thrown, you throw

these hundred locations, do a forward pass, now what will happen is, for each xi, I obtain a Ti

that is fine. but notice there is no ground truth I do not know what temperature is supposed to

be here. so how do I do a backprop how do I find out a how do I find out a loss function here.

(Refer Slide Time: 12:48)

So, here is where the genius of Lagaris has shown you define J as I showed earlier you define J

not on Ti but on derivative of Ti. So, 𝐽 =
d2Tî

dx2 − 𝑓(xi), so the loss is what I would call the ODE

loss. So, we will call this JODE notice if you had the data there you could have used it but you

do not have the data, but you do know you know one secret in this domain it is not as if nothing

is known about what happens here. we know that at every point the ODE is satisfied. so

regardless of where you sample even if you do not know the temperature you do know that the

temperature satisfies a certain relationship which is
d2T̂

dx2 − 𝑓(xi) is supposed to be zero. now

instead of setting that to zero we want now we cannot satisfy that every point but we can

minimize it.

So, instead of doing this you try to minimize which would be the same as trying to force it to

zero if we can do so okay. So, what we do is we simply such create a loss function which is the

sum of the individual residuals of the ODE okay. So, this is a very simple but powerful idea but

you will say okay I had only T during the forward pass where do I get
d2T

dx2 from. Now notice x

led to T and it is an analytical expression which means that through backprop just like I can find

dT

dw
 the process that I showed you I can find out

dT

dx
 also and in fact I can repeat this back prop

twice and I can get
d2T

dx2 so when you calculate
d2T

dx2 this will be a function of the w for example

let us take the simple case here 𝑇̂ = w2𝜎(w1𝑥).

This will mean
dT

dx
 = w2𝜎'(w1x)*w1, let us let me write it here just to be clear.

(Refer Slide Time: 15:42)

So, in case T equal to let us say w2𝜎(w1𝑥) or let me replace the sigmoid with some general

function w2g(w1𝑥) this means
dT

dx
 = w1w2g'(w1x), which is if you notice another function of

x as well as w1 and w2. Next
d2T

dx2 = w1
2w2g'(w1x). So, notice this so when I give you a new

x I have let us say hundred x so if I give you x1 you can calculate this at x1, you also have the

right-hand side which was some x2 + 3x + 1 let us say so you do x one square calculate this

okay so this for.

For a given x one we can calculate this then you can write
d2T

dx2
-RHS(x), this will be the loss

function you can calculate that.

(Refer Slide Time: 16:58)

Now you have the last step so basically J has been calculated is ∑(
d2T

dx2 -RHS(x))2 this is just the

ODE loss. The final thing is you want to find out improve w, so w = w-𝛼
𝜕JODE

𝜕w
 , so you do this

for all the ten w, then w is updated. so now run in a loop at convergence you obtain w. now

once you obtain w it means you have T(x) why because T(x) was simply a function of x and

w which means unlike c of d which gave you solutions only at six points this gives you T(x) at

every x unlike CFD. CFD gives you only at discrete x points

So, the difference between PINN and CFD is PINN treats the problem as an optimization

problem. what are you trying to optimize? you are trying to minimize this function let whatever

be the function that you are trying to solve you are trying to minimize that function I will make

this a little bit cleaner in the next video. CFD on the other hand is solving this directly as a ode

residual ODE or PDE residual. second is you get the full solution at every point. here you get

solution at discrete points. Finally, this mesh is not very important okay we will see how that

affects things shortly. whereas here mesh is very important, because depending on how I give

the mesh my difference equation or my difference approximation actually changes.

(Refer Slide Time: 20:09)

Now there are a few things that I have not discussed here. The things that I have not discussed

at this point are how do I incorporate BCs second how do I solve inverse problems and of course

some developments in this field okay. So, for example I want to talk about what the general idea

of Lagaris was how that was improved by Raissi and Karniadakis and then there is some work

that we did even at IIT Madras regarding this to improve upon this method so these

developments I will discuss in the future videos. This was just a very brief introduction to the

idea of physics informed neural networks I will also talk about why they are called physics

informed as is as against something else which it becomes obvious once we talk about inverse

problems.

But before I go further, I just want to you to remember one very key point here. There is no data

okay unlike let us say a normal neural network, where you give some ground truth, the ground

truth here comes from the differential equation. So, the truth that you are trying to talk about is

the fact that at every point here you can choose any point in the domain we know that the

differential equation is satisfactory. that is the genius of the method which was first introduced

by Lagaris. so the idea is this every point here you can apply this loss function without any

doubt, even though you do not know what T is you do know what
d2T̂

dx2
− 𝑓(xi), so I will show

you a simple example of this you know without the confusion of the neural networks in the next

video and then we will proceed with what exactly Lagaris did, Raissi did and other

developments in the next video so I will see you in the next video thank you.

