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Welcome back to week eleven of inverse methods in heat transfer. In this video we will be 

looking at an important modern technique called physics informed neural networks. Pioneering 

work in physics informed neural networks has been primarily done by the crunch group in 

brown headed by professor George Karniadakis. But before this there was actually a very 

similar in my opinion paper by Lagaris et al this is sometime in nineteen nineties. I think the 

paper that I am going to show is Lagaris 1997. so, what I would like to do is to think of physics 

informed neural networks also called now called PINNs in two steps. first is PINNs for forward 

problems and then PINNs for inverse problems.  

 

In my opinion it is in the solution for inverse problems that PINNs really shine in forward 

problems you will see that they offer a very nice alternative to traditional techniques the CFD 

technique that I introduced you to in the last week. But really speaking their major power comes 

in inverse problems where you do not need any large-scale simulations as I had shown you for 

the case of surrogate models in the last video. So, this is a very interesting idea like I said first 

introduced by Lagaris et al I will show you the paper. But let me first briefly introduce you to 

the idea okay so the idea is this suppose you have any ODE or PDE okay. So, I will take an 



example ODE or PDE, so let us take some ordinary differential equation let us say we have the 

equation 
d2T

dx2
 equal to some source some let us say some volumetric heat generation, in this case 

let me give you an example let us say volumetric generation looks like x2 + 3x + 1. 
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So, the way you would solve it using CFD would be you would make a mesh and you will take 

these points in the mesh some point some random points. so let us say in this case ∆x let us say 

this goes from x = 0 to x = 1 and this is x = 0.2, 0.4, 0.7 let me make it uniform and add one 

more point here so point two, point four, point six, point eight and one so then you say something 

of the sort that this is i equal to one two three these are grid points five six then you will have a 

relation such that 
Ti+1-2Ti+Ti-1

(∆x)2  =  xi
2 + 3xi + 1.  

 

So, this if you see the right hand side is known the left hand side basically becomes a matrix 

and you will have something like T1, T2 up till T6 equal to some RHS so we will have some 

matrices which will look like one minus two one one minus two one and to get right diagonal 

matrix in case this looks too fasting please do take a look at a basic numerical methods course 

my point here is traditional CFD solves for these points separately. So, each of these solutions 

is a separate solution and you solve for that. now here is the PINN idea the PINN idea is this I 

know that T the solution T is a function particularly T here in this ODE is a function of x okay,  

 

Now the way we solve CFD was not to assume that it is a function of x or at least not explicitly 

there are implicit assumptions here in terms of piecewise linear piecewise quadratic etcetera. 

So, you take these six as separate unknowns okay you have to of course give boundary 



conditions which I am skipping briefly for now I will come back to the boundary conditions 

issue very shortly. but for now, let us just ignore the boundary conditions of the problem, but if 

we just look at these separate solutions you actually get separate solutions for CFD at least six 

patches. now there is a different method once I know that T is a function T(x), I can say 

approximate T with a neural network what does that mean? 
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It means here is a diagram I take x, this is the input. There is some neural network here for 

example there could be one hidden layer multiple hidden layers, we have already seen these 

examples and the output here is T(x). Now notice even though as I have said it multiple times 

even though I draw this as a diagram every diagram you would have seen this in the exercise 

also is equivalent to an analytical function.  

 

For example, if I take x just have one neuron here which is sigmoid and this is w1 and I have a 

linear output here y or let us call this T just to be consistent 𝑇̂ and this is w2 then this will say 

that 𝑇̂ = 𝜎(w1𝑥), now this layer will multiply, this multiplied by w2 so this then is a function 

okay so 𝑇̂(x) is also a function. 

 

This also is a function except it is a complicated function. Now how does that help us. once I 

know that it is a function, the way I do it is as follows. 
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You assume some architecture means number of neurons, number of layers etcetera, assume 

some architecture for T(x) so it could be like something of this sort x, T(x) okay etcetera okay 

here there should not be any layers but anyway. so then use or find 
d2T

dx2, how do I find out 
d2T

dx2? 

once I know this this can be done through backprop or what is known as automatic 

differentiation which we saw in the last video. So, for a given T(x) you can find out what 
d2T

dx2 is 

and then solve let me show this a little bit better.  

 

Then effectively solve 
d2T

dx2 equal to some RHS let us call this f(x), by minimizing ∑
d2T

dx2 -f(x) all 

of these calculated at i over lots of points.   
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So, the way this works is as follows the same domain I take lots of points now unlike CFD these 

points have a different purpose. They do not have to be uniform. These are treated basically as 

data points, where I will show you the brilliance of this when it is applied to inverse problems 

later on. But these do not have to be uniform you can basically treat these as data points. so let 

us say we have one two three n data points okay. now the general process is as follows, the 

process is making a NN approximation what do I mean by making NN approximation?  

 

Choose So let us say I can choose number of layers and neurons so let us say for the differential 

equation that I have shown I make a simple choice. 
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So, for example I choose one 1 hidden layer plus five neurons, if I make that choice, so this is 

what it will look like x then one two three four five and then T okay. now what is the problem 

here? the problem here is we do not have these weights so w one one w one two etcetera with 

unknown weights okay. so let us say our weights are also unknown okay so we have a whole 

bunch of weights here let us say we have weights and biases, but let us say just weight so let us 

say in this case we have ten unknown weights okay. So, what do we do we do the usual thing 

that we do with neural networks guess for these unknown weights.  

 

This also looks simply. So, we just guess for these weights alright. So, we have an initial guess. 

now we need to improve, do the forward pass okay. So, we do the forward pass how many times 

n times, let us say I have hundred data points so for each x location okay, so if you have a 

domain going from zero to one and you have hundred locations randomly thrown, you throw 

these hundred locations, do a forward pass, now what will happen is, for each xi, I obtain a Ti 



that is fine. but notice there is no ground truth I do not know what temperature is supposed to 

be here. so how do I do a backprop how do I find out a how do I find out a loss function here. 
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So, here is where the genius of Lagaris has shown you define J as I showed earlier you define J 

not on Ti but on derivative of Ti. So, 𝐽 =
d2Tî

dx2 − 𝑓(xi), so the loss is what I would call the ODE 

loss. So, we will call this JODE notice if you had the data there you could have used it but you 

do not have the data, but you do know you know one secret in this domain it is not as if nothing 

is known about what happens here. we know that at every point the ODE is satisfied. so 

regardless of where you sample even if you do not know the temperature you do know that the 

temperature satisfies a certain relationship which is 
d2T̂

dx2 − 𝑓(xi) is supposed to be zero. now 

instead of setting that to zero we want now we cannot satisfy that every point but we can 

minimize it.  

 

So, instead of doing this you try to minimize which would be the same as trying to force it to 

zero if we can do so okay. So, what we do is we simply such create a loss function which is the 

sum of the individual residuals of the ODE okay. So, this is a very simple but powerful idea but 

you will say okay I had only T during the forward pass where do I get 
d2T

dx2  from. Now notice x 

led to T and it is an analytical expression which means that through backprop just like I can find 

dT

dw
 the process that I showed you I can find out 

dT

dx
 also and in fact I can repeat this back prop 

twice and I can get 
d2T

dx2 so when you calculate 
d2T

dx2 this will be a function of the w for example 

let us take the simple case here 𝑇̂ = w2𝜎(w1𝑥).  



 

This will mean 
dT

dx
 =  w2𝜎'(w1x)*w1, let us let me write it here just to be clear. 
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So, in case T equal to let us say w2𝜎(w1𝑥) or let me replace the sigmoid with some general 

function w2g(w1𝑥) this means 
dT

dx
 =  w1w2g'(w1x), which is if you notice another function of 

x as well as w1 and w2. Next 
d2T

dx2  =  w1
2w2g'(w1x). So, notice this so when I give you a new 

x I have let us say hundred x so if I give you x1 you can calculate this at x1, you also have the 

right-hand side which was some x2 + 3x + 1 let us say so you do x one square calculate this 

okay so this for.  

 

For a given x one we can calculate this then you can write 
d2T

dx2
-RHS(x), this will be the loss 

function you can calculate that. 
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Now you have the last step so basically J has been calculated is ∑(
d2T

dx2 -RHS(x))2 this is just the 

ODE loss. The final thing is you want to find out improve w, so w = w-𝛼
𝜕JODE

𝜕w
 , so you do this 

for all the ten w, then w is updated. so now run in a loop at convergence you obtain w. now 

once you obtain w it means you have T(x) why because T(x)  was simply a function of x and 

w which means unlike c of d which gave you solutions only at six points this gives you T(x)  at 

every x unlike CFD. CFD gives you only at discrete x points  

 

So, the difference between PINN and CFD is PINN treats the problem as an optimization 

problem. what are you trying to optimize? you are trying to minimize this function let whatever 

be the function that you are trying to solve you are trying to minimize that function I will make 

this a little bit cleaner in the next video. CFD on the other hand is solving this directly as a ode 

residual ODE or PDE residual. second is you get the full solution at every point. here you get 

solution at discrete points. Finally, this mesh is not very important okay we will see how that 

affects things shortly. whereas here mesh is very important, because depending on how I give 

the mesh my difference equation or my difference approximation actually changes. 
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Now there are a few things that I have not discussed here. The things that I have not discussed 

at this point are how do I incorporate BCs second how do I solve inverse problems and of course 

some developments in this field okay. So, for example I want to talk about what the general idea 

of Lagaris was how that was improved by Raissi and Karniadakis and then there is some work 

that we did even at IIT Madras regarding this to improve upon this method so these 

developments I will discuss in the future videos. This was just a very brief introduction to the 

idea of physics informed neural networks I will also talk about why they are called physics 

informed as is as against something else which it becomes obvious once we talk about inverse 

problems.  

 

But before I go further, I just want to you to remember one very key point here. There is no data 

okay unlike let us say a normal neural network, where you give some ground truth, the ground 

truth here comes from the differential equation. So, the truth that you are trying to talk about is 

the fact that at every point here you can choose any point in the domain we know that the 

differential equation is satisfactory. that is the genius of the method which was first introduced 

by Lagaris. so the idea is this every point here you can apply this loss function without any 

doubt, even though you do not know what T is you do know what 
d2T̂

dx2
− 𝑓(xi), so I will show 

you a simple example of this you know without the confusion of the neural networks in the next 

video and then we will proceed with what exactly Lagaris did, Raissi did and other 

developments in the next video so I will see you in the next video thank you. 


