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Welcome back, we are in week eleven of inverse methods in heat transfer. In this video | would
like you to 1 would like to give you a simple introduction to this week and also talk specifically
about artificial neural networks as surrogate models. Over the last several weeks from week
eight to week ten we have been looking at neural networks and we have looked at especially in
the last week in detail how the forward pass and the backward pass or the back propagation

algorithm works in neural networks.

Now specifically a thing that | would like you to remember as we go through this week is
remember that neural networks or artificial neural networks are functions, | emphasize this quite
a lot over the last two three weeks but please do remember this especially as we come to this

portion the physics informed neural networks portrait okay.

This week what we will be looking at is how to use ANNSs for inverse problems and it is this
property that helps us do this this plus the fact that ANNSs are universal approximative, okay.

So what this means is you can write any function you want or you can approximate any function



you want as an ANN and in order to find out the parameters of the ANN as we saw in the last

three weeks we solve inverse problems.

So, there is a tie up with inverse methods in another fashion house okay. So, this week we are
looking at these three things, how to use ANNSs as surrogate models which I will discuss in this
video. Then we will look at physics informed neural networks which are a way of using ANNs
more to solve forward problems as well as inverse problems you will see that when we try to
solve ANNSs as surrogate models it requires a lot of conventional simulation whereas when you
use physics informed neural networks also now known as PINNs physics informed neural
networks when we use these you do not need any additional simulation in order to support your
inverse problem solution.
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Now we will be surveying primarily this week some research papers | have written those papers
down here and | will be showing you some of these papers even in this video. The purpose of
these papers is to serve as an introduction to this field okay | would encourage you to go online
see if you can download these papers unfortunately, | cannot share these papers directly due to

copyright violations.

I will be showing because that is apparently it is not a copyright violation to show and you might
have seen online several people do share papers in fact almost all of these papers except for the
first one is available freely online on archive. The first paper here corresponds to using ANNS
as surrogate models which we look at within this video and these three or four papers are related

to using ANNSs in order to define physics informed neural networks okay. one last thing before



we step into the problems for step into surrogate models this week, | will not be showing you
codes | had promised you in the last week that | would show you some of these programs even

for last week as well as this week.

This will be doing in the next week this week we will concentrate primarily on theory there
were some technical problems because of which I was not able to demonstrate the codes this
week. we will stick with theory this week and I will show you some demos and primarily next
week’s videos will be geared towards showing you demos. So let us now step into the very first
problem which is how to use inverse how to use ANNSs as surrogate models so let us look at
that now.
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So ANN:Ss as surrogate models what does this mean I will show you by means of an example by
reference to the Chanda et al paper. but let us first talk about the general problem and then come
back to the specifics. so let us say you have a complicated domain okay complicated let us even

say a three-dimensional domain by a domain | mean you have a three-dimensional body okay.

So, there is a three-D body and the inverse problem is as follows, let us say you have let me
make the simple let us say we have a heat conduction problem okay so this could this body
obviously this is not the shape of any fin within a realistic domain. but let us say I am just
showing you a complex enough body so that it does not look like the solution is straightforward
so let us take a heat conduction problem let us say within a chip you are trying to optimize
thermal management of a chip and you want to optimize heat transfer from there so

unfortunately you do not perfectly know the thermal conductivities of the material okay.



So, let us say that the material is what is known as anisotropic. Anisotropic means and this is
the paper that I am going to show x y z k behave differently okay so this happens for composite
materials some of you might be familiar with this from solid mechanics but in general assume
that you have a material which does not behave in the same way in the three coordinate
directions that is there are different material properties depending on which direction you are
looking at in as far as heat transfer is concerned just as an example or just as clarification, for

example if it was isotropic then k in each direction is the same so we would say k., is the same

2 2
as kyy is the same as k,, and you would have something I|ke — + a_ + 21—,

dz2

So, this is if it is isotropic. On the other hand, if it is anisotropic then your property would look

like or your governing differential equation coming from energy would look like kxxg Z +
9°T 9:T _ bviousl| . . . ic if _ _
k_Wa—2 + kzzﬁ = 0. So obviously anisotropic goes to isotropic if kyy, = kyy = k.
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So, in order to solve for temperature within this body here you would have to solve this
differential equation. So, this differential equation is what will lead to the solution for
temperature ¢ okay now suppose | want to estimate our inverse problem. our forward problem

is or let me write the forward problem first.

So, the forward problem would be given k., Kyy, k;;, find there is a heat transfer or find the

temperature distribution find temperature as a function of x, y, z. The inverse problem I will



show you the mathematical formulation also little bit later the inverse problem is given t at some
locations please remember we can only give this at a finite number of locations for example we
could give locations such as this so suppose | have five or six thermal thermocouple sensors
distributed across the body even though it looks like it is within a plane remember this is a three
d body I could put my sensors anywhere so given this at some x i or some i equal to one two
three four how many ever sensors we have we have to estimate we cannot find but we can

estimate the property okay.

Now how would one go about this. so the normal procedure will require us to have a forward
model what is this forward model forward model solves the forward problem that is from k,

K.y, k,, find T(X, y, Z). okay now this is sort of a black box as we have been doing so you have

yy:

inputs k., Kyy, K,, and these three go in into the forward model and what comes out is

yy
temperature at any X, y, z that you wish to give if you wish we can add x;, y;, z; here and you
get temperature at x;, y;, z;
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So, the procedure is this you need a forward model then find ky, kyy, k,, that minimize so let
us call this T that minimize our T-T at these points square summed over all | okay so you find

the least square loss, you can divide by two and the number of points that we had etcetera okay.

So, we want to find this out and this is an obviously an optimization problem now if you
remember all the hand-based calculations that we did this is where they become important each

forward calculation takes some effort of course we took linear examples or a simple a(1-e™®%)



or some such example but the forward model for this 3D case is extremely complex. So,
unfortunately, the forward model is expensive. why is it expensive? because it requires a full
CFD simulation. now since | have not talked about CFD within this course | will give you a
small very brief introduction to what CFD is. CFD of course stands for those of your familiar
computational fluid Dynamics or of course you can have CFD computational heat transfer if

you wish.

But the standard name has always been computational fluid dynamics. Idea is simple idea is if

02T

yyaz+k

you have an equation like k + k T all these are replaced by discrete

XXaz ZZaz

approximations. what is the example of a discrete approximation?
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So, the idea is simple if you have two points let us say we are looking at a simple one-

. . . . dT . . . .. .
dimensional derivative ™ then since we have only information at finite number of points let us

T(xi+Ax)-T(x4)

say this is at x; this is at x; + Ax then you will say that 3—I is approximately -

Now what this enable is that this whole equation which is complicated differential equation.

now becomes a difference equation for example we can show I am not showing this here that d

square t dx square so this of course is just the slope S|m|IarIy can be approximated by

T(xi+Ax)-2T(xj)+T(xi-

Ax?

=) So, this is of course approximate please remember this this is not exact.

now once you do this this system basically becomes a system of linear equations. why? because



all you will have been T at some point minus T at some other point plus T at some other point

it is just a combination of temperatures at a lot of places okay.

So, if you see here typically what you would do is let us say your domain looked something like
this. you would put these grid points and you will start estimating temperatures here, but every
temperature depends on every other temperature, because the equations here you will basically
say that this is equal to zero so you will get a series of equations. | will leave | am giving you
just a brief idea here for intuition otherwise please look up something called the finite difference
method which is the most intuitive method for computational fluid dynamics. you should be
able to understand it in case this brief two-to-three-minute introduction was not sufficient. So,

what you do is you create what is known as a mesh.

Mesh consists of points where you wish to find out the temperature and as you reduce delta x
your estimate T becomes more accurate okay. all this is to say that this forward model is
expensive. why is that? because first you will have to create a mesh next you will have to solve
for temperature at all points, why because, only when delta x becomes very small your act your
solution accuracy becomes very high once you do that usually sometimes you might have as
many as million points even if you have ten sensors here in order to solve for the temperature
there accurately from your forward model you might require a million mesh points in order to
obtain them okay so let us say you have these sensors at all these points you have ground truths

T,, T,, T, etcetera.

You also want to make predictions from your computation even T;, T, etcetera but in order to
calculate T}, T, you have to solve CFD for every iteration if you are using an iterative method
and if it is a nonlinear problem as it was with gauss newton etcetera. you will have to solve for
each iteration of gauss newton you will have to solve multiple you have and you need a CFD
solution in order to get T'.
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Since this is expensive you cannot really use this in order to solve kyy, k

yy» Kzz because you
have multiple iterations it takes a huge number of CFD simulations for an inverse problem so
huge CFD computation for inverse problems. If time permits, | will show you an example of

this in the next week but I am not sure if there will be sufficient time for that okay.

Now here is where ANNs come to our rescue okay so ANNS to the rescue how so you use and
approximate solution to the CFD computation okay. Now how can we do this the idea is like
this so this is what is known as a surrogate or a substitute model. A surrogate means a substitute.
So, the idea is this surrogate model should be cheaper than CFD okay. So how do we solve the
inverse problem assume that we have some method of getting this okay, assume we get some
method of getting the surrogate model then what we do is we use the cheaper model here, you
run a forward model but you do not run CFD you actually run the cheaper model and then
iterate.

(Refer Slide Time: 18:46)
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So, let me first show you how to get a surrogate and this is where all that we did in the last few
weeks comes to use. So how to get a surrogate using ANNS. so let us say we have used CFD

solver run multiple simulations okay so we run multiple simulations with various Ky, Ky, k;.

yy?

So, you put a whole bunch of k., k., kK, collect one second collect T of some x y z at various

yy»
points and then use an ANN that takes kyy, kyy, k,;, X, y, z as input and gives T of X, y, z with
Ky Kyy,

(Refer Slide Time: 20:25)
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So, in short, your network is going to look like this it is going to look like kyy, kyy, k5, X, Y, Z.
how many ever layers you want it would be one layer two layers multiple layers and it gives out
one output which is the temperature. so how do we train it we do a simple standard supervised

learning.



A supervised learning is such that for a given kyy, kyy, k,, and take multiple locations, you

yy!
actually just need this do a CFD simulation, from the CFD simulation take ground truths from

CFD. So, you make a table fix one kyy, kv, k,, take multiple X, y, zs measure temperatures

yy:
there so that you get a huge data set of temperature versus kyy, Kyy, k25, X, y, Z now trains the
model the unknowns of the model are of course w learn these. Now what happens is this process
of collecting the data all this process is of course expensive, but it is offline. Offline means we
do not have to do it as we are collecting the experiments you can do them just once you do it

once you finish it now, what you will actually have been actual measurements okay.

So now you do the experiment after having done the simulation you build your model you build
your ANN model now you make some measurements. you make let us say twenty temperature
measurements you see those temperature measurements twenty temperature measurements and

then solve an inverse problem. how do you solve the inverse problem guess for Ky, kv, k,, do

yy:
a forward pass the forward pass however should not be through CFD but through the ANN
which is an approximation it is a good enough approximation. So, if you make a good
approximate it will do a forward pass through CFD and | will demonstrate it to you next week

for some of the simple problems that we have done earlier.

So you do a forward pass through the CFD and through that forward pass you see well how
much does T match T. T is remembered through the ANN through the surrogate model T was
through the experiment we are making an experiment and trying to match this. once you do that

you will see T-hat does not match go back correct kyy, kyy, k;, and keep on doing so note that

there are two inverse problems being solved here first inverse problem being solved is to
approximate the CFD solutions and find w for the surrogate model. The second approximate so
this is for example this inverse problem is for the computation or for the forward model and the
next approximate is for the inverse model. Now let me clarify this in case this is not clear let
me clarify this by visiting the paper by Chanda et at and hopefully this will become a little bit
clearer.

(Refer Slide Time: 23:45)
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Composite materials are novel inventions of material science which are often used as viable solutions in
many technologically challenging situations like aero-space and satellite applications, because of their
well known superior mechanical properties. The challenge which these materials always pose to the
thermal designers, is knowledge of their thermal properties, effective directional thermal conductivity
being one of them as this is critical in the design of systems employing these materials. The present work
aims at developing a novel experimental technique for the simultaneous estimation of principal thermal
conductivities of a layered honeycomb composite widely used in aerospace structures. A new standard
test material exhibiting structural anisotropy with respect to thermal transport is first conceptualised,
designed and fabricated. A full scale direct numerical simulation is performed on the standard test
material to understand the thermal transport process in it and determine its principal thermal con-
ductivities. Following this, carefully designed experiments are performed on the standard test material in
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Full scale direct numerical simulation
Thermal contact conductance

simulated space environment (inside a vacuum chamber) and its principal thermal conductivities are
estimated using the developed inverse gy based on a tic comk of artifigigt™
neural network (ANN) and genetic algorithm (GA). Experimentally obtained thermal conductivities 82 3
compared with those obtained from full scale numerical simulations. A close agreement between the
experimentally and numerically estimated thermal conductivities is observed, validating the lvrhnlqyg:‘
and establishing the possibility of use of a full scale numerical model as an alternate and standalohe

So here you can see this publication which that | was referring to by Samarjeet Chanda,

professor ¢ Balaji, professor S P VVenkateshan and this work was done at 11T Madras a few years
ago. professor ¢ Balaji of course is a distinguished professor also at IIT Madras in the
mechanical department and professor SPV S P Venkateshan was also an ex-professor here he
is now retired. | think Samarjeet Chanda | am not sure if he is a faculty member at 11T Palakkad
but he was at 1T Madras and the PhD student at the time that he wrote this paper this is just a
simple demonstration of how you can use ANNSs very effectively in order to solve for inverse
problems the problem somewhat similar to the one that | described the geometry is a little bit

simpler.

But as you can see the abstract here, this is basically the idea is to define or determine the
thermal properties of a composite material. The typical composite material here would be the
assumption that is you are going to use it for aerospace or satellite applications which is why a
person from ISRO was also a joint author in this paper. So, the idea was to determine both an
experimental technique as well as an inverse estimation technique | am not going to go over the
experiment you are welcome to look at the paper and search for this paper the title is available
right here for you it was published in this reputed journal for 1JDS, International Journal of
Thermal Sciences Professor C Balaji is currently an editor distinguished editor of this journal.
(Refer Slide Time: 25:31)



being one of them as this is critical in the design of systems employing these materials. The present v
aims at developing a novel experimental technique for the simultaneous estimation of principal thei
conductivities of a layered honeycomb composite widely used in aerospace structures. A new stan(
test material exhibiting structural anisotropy with respect to thermal transport is first conceptuali
designed and fabricated. A full scale direct numerical simulation is performed on the standard
ficial material to understand the thermal transport process in it and determine its principal thermal |
ithm W ductivities. Following this, carefully designed experiments are performed on the standard test materi
¢ simulated space environment (inside a vacuum chamber) and its principal thermal conductivities
tion estimated using the developed inverse methodology based on a synergistic combination of artif
neural network (ANN) and MM. Experimentally obtained thermal conductivities
S compared with those obtained from full scale numerical simulations. A close agreement between
experimentally and numerically estimated thermal conductivities is observed, validating the techn

M M and establishing the possibility of use of a full scale numerical model as an alternate and standa
approach for estimation of thermal conductivities of structured integral composites. Finally, a lay

'Nﬂ‘ honeycomb composite having carbon fiber reinforced plastic (CFRP) facesheet and aluminium

aﬁ” actually used in satellite applications is tested and its principal thermal conductivities are estime
05\1' Problems related to interface thermal contact conductance in case of honeycomb composites are
brought out and addressed.
A b S“* /&”‘ M © 2016 Elsevier Masson SAS. All rights reser
G

So, what was done was the property of a particular honeycomb composite, composite being for
the purposes of this video simply being something where you are going to have different
anisotropic properties in each direction okay. In such a property you basically want to determine
the thermal conductivities. So, they did the full scale direct numerical simulation which I did
not go over here in order to understand the thermal transport process and determinates thermal
conductivity. So, this is a ground truth for thermal conductivities but let us not look at that. so
now all they did was they developed an inverse methodological underlined this okay so the idea
here was it required two different algorithms one was an ANN and a genetic algorithm.

This ANN is used as | said just now as a surrogate model, what is meant by a surrogate model,
| just explained it, in case you want to run the forward pass really fast you want to approximate
the CFD results really fast in order to estimate the property. The genetic algorithm is what was
used in order to estimate the optimization problem, the optimization problem or the inverse
optimization problem I will come to this distinction later | often find that the first-time people
look at it they are a little bit confused even though we have done exactly the same thing so far.
So another way of looking at it is the ANN was used to serve the role of remember we had our
expression like T-hat equal to w0 plus w1l x instead of that we use an ANN, because We actually

do not know the analytical expression we use an ANN there.

So that is the role of the ANN. ANN was serving the role of the forward model now when we
do the correction when we do the optimization GA was used to use the same thing as what we
used gradient descent for okay gradient descent or gauss newton instead of that a different

algorithm was used here, which is the genetic algorithm. So, when you see genetic algorithm



just assume that we are doing something like Levenberg Marquardt that Tikhonov regularization
of gauss newton so those are the two relative the roles of these two things.
(Refer Slide Time: 28:22)

analysis, 1t 1s found that the base material contains 73. e,9.
Ni and 17.34% Cr. This composition is in-line with that envisaged by
ASTM standard A240/A240 M, ensuring the purity of the stainless
steel grade used. It is to be noted here that the fabrication process
for the standard sample did not involve any metal joining process
either using adhesives or metal to metal fusion such as welding.
Thus care was taken to prevent contact resistance between surfaces
in any form which would result in additional uncertainties, as

elucidated in Chanda et al. [ 16]. \J
Kee r “13/ KAS —?é
k/

The forward problem in the present study concerns the_esti-
mation of temperature distribution on the standard test sample
given its thermal conductivities along the three principal di-
rections. It is worthy to note here that the principal directions have
been carefully aligned with the coordinate axes directions (x,y and
z) for the test samples considered in the present study. The basic
idea behind development of the forward model is to simulate
numerically the exact experimental conditions and predict the
thermal behaviour of the standard test sample. Since the standard
test sample has a periodic arrangement of fins and cavities
machined inside the stainless steel block, it is anisotropic as well ag==
inhomogeneous and hence can be modelled using effective dire§
tional thermal conductivity approach. Sy

Let us consider the standard test sample as shown in Fig. 3, L&{"T!

() Front view

3. The forward problem

(b) Isometric view

« 2. Pictorial view of the standard test sample.

of the standard test sample remain intact. The

So, I will just come down here and show you where the forward problem is. so, what we were

looking at is design of an isotropic material of this sort and try to estimate the temperature
distribution on the standard test sample okay. so, the forward problem here is remember given
Kyr Ky
Ky, K

k,, find T so that is what is written here remember the inverse problems given T find

yy» Kzz. SO, we are going the other way around in the forward problem so as it is written

here you want to estimate the temperature distribution given its thermal conductivities along the
three principal directions okay so the standard test sample is shown there
(Refer Slide Time: 29:10)
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medium is given by Eqn. (1). T =300 K initially and a uniform heat flux is injected at the centre
of the sample over an area of 30 x 30 mm? for time t > 0. The
standard test sample is allowed to attain steady state by rejecting
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the supplied heat flux to the cold sink through the copper frame, On
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The boundary conditions governing the above problem are
depicted in Tigs. 7 an are also listed here,
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attainment of steady state temperatures at predetermined loca-
tions are recorded and used for estimating the principal thermal
conductivities. As observed from Fig. 3, the standard test sample is
in contact with the copper frame, hence a thermal contact
conductance arises at this surface whose value is required to be
known a priori for solving the forward problem. Determination of
this thermal contact conductance is elucidated in Section6.2.

4. Experimental setup

The experimental setup used in the present study mainly con-
sists of the test sample assembly housed inside an inverted bell jar
type vacuum chamber made of stainless steel. Avacuum pressure of
1 % 10°% mbar is maintained inside the vacuum chamber, using a
vacuum pumping system consisting of a turbomolecular pump
backed up by a two stage rotary pump. The vacuum level in the
chamber is measured using a combination of Pirani and Penning
gauges and constantly monitored during the experiments. The
main idea behind using a vacuum environment is to eliminate the
convective heat transfer losses which lead to additional un-
certainties in the estimated thermal conductivities. Moreover, sinc
the experiments are conducted at subzero temperatures, enormous

condensation of water vapour present in ambient air shall occur, Np

2y,
%
%

2

3

P
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And of course the equations are the same as what | showed earlier k xx del square T del x square
plus k yy del square T del y square etcetera and you are also given the boundary conditions so

which are of course essential in estimating the forward problem.

Otherwise, you cannot really solve the forward problem so you have insulation at a few ends
you have and this place you have a free conductive boundary and here of course is insulation
and this is at the bottom side you are providing some bead so these details are unimportant as
far as the course is concerned, but you can see the detail to which you need to give the model
perfectly in order for you to solve it. now if | gave you this analytically, | can give you all these
things a b ¢ and ask you to solve analytically, you cannot solve it analytically, because this is
not something that you can easily solve you will have to use some Fourier series and even then,

frankly you will get only a few terms.

So, what we do is effectively what we are doing is approximating using ANNs. Now there are
two ways of approximating using ANNSs, the first way to approximate using ANNS is solve the
CFD solution okay so that is what is done you now discretize this this is called turn it into
discrete sets, which means you have this box. you put lots and lots of meshes okay you put three
d meshes and at all these points you write a discrete version of the finite difference equation
and you solve a linear system of equations, that is going to be a big linear system and it is going
to be an expensive solution. once you solve this then you approximate it so you make a table of

various solutions so basically what they did was for various values of k.., k.., and k,,, they

vy’
ran for various x, y, z.

How they solved this problem and measured at various x y zs made a giant data table as far as
I know they ran two hundred simulations | will show you that later in the paper, they ran two
hundred simulations collected all that data and then approximated this data using ANNs and we
saw the process of approximation in great detail in the previous weeks so once you approximate
that then you go ahead and solve the inverse problem. but first let us see the forward problem
and how we approximated using ANN.
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0

except the copper frame area

The standard test sample is at a uniform temperature of

Copper frame
(T = constant)

Cold fluid lines

Fig. 3. Assembled view of the standard test sample setup.

throughs essentially consist of two mating parts both having metal
contact pins on either side. The electrical and thermocouple wires
are soldered both on to the inner(vacuum side) and outer (open
0 atmosphere) side pins of the mating contact parts of the feed-
through. Once both the push on type mating parts of the feed-
through are connected the circuit gets completed and electrical and
voltage signals are transferred from inside the vacuum chamber to

Heater area

@)

Heater support
fixture

Standard test sample
(insulated on top, four
sides and bottom except
copper frame area)

Liquid cooled plate

wttsn.

So, this is what the setup looks like, the actual physical setup.
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regulated and programmed as well to give a
1 to the heater in order to control the heater
e the heat flux injected into the test sample.
components of the test sample and associ-
in Fig. 4. The measurement data is acquired
el data acquisition system (EX1048A) man-
iments. The instrument has a resolution of
programmable and can be connected to a
»g the data into files during the experiments
the experimental setup, one may refer to
1e temperatures at the predetermined loca-
the data acquisition system at steady state
when none of the temperatures changes by
) and are used for the estimation of principal
by harnessing the inverse model using a
“hnique.

rincipal thermal conductivities namely Ky,
leasured steady state temperature distribu-
[ the inverse problem being solved in the
se problems in general are formulated in
“causes”from the “effects"and are ill posed

non linear relation between the independent and dependent var-
iables as linear ones successively, each hidden layer being respon-
sitﬂe for accomplishing the same. c Wolwix

The finite difference solutiop to the forward problem is trans-

formed into a feed forward back propagation Artificial Neural
Network and is trained using the Levenberg Marquardt algorithm]
Such an exercise leads to a reduction of computational cost as
elaborated by Chanda et al. [16] The network has one hidden Jayer
with_Z_KLneurons. takes Ky, kyy and k;; as input and yields 19 tem-
peratures as output. A total of"Z_Oj_lfata sets of temperatures ang
corresponding 1 < Ky, kyy and kz; < 15 W/mK are used for training
the network. The Genetic algorithm code available with MATLAB
software has been used in the present study. The entire process as
elucidated above is depicted in the form of a flowchart in Fig, 6 The
various Genetic algorithm input parameters used are listed in
Table 2, For an elaborate discussion on Genetic algorithms please
refer to Goldberg [17].

6. Estimation of principal thermal conductivities of standard
test sample

The detailed analysis undertaken for estimation of principaf
thermal conductivities of the standard test sample is presented irk.’
this section with emphasis on estimation of thermal parasitic losses:s

Now | will show you where they measured it also this directly jumps into the inverse problem
but I before I come there you can see this the finite difference of the forward problem is

transformed into a feed forward back propagation or artificial neural network.

So, this is where so you can see that even this ANN can be used, we use gradient descent but
they used Levenberg Marquardt so forget that. what this is doing is a simple thing you are
basically trying to find out the equivalent of T = w, + w, x but the way you do that is take the
finite different solution run many different solutions how many they took two hundred data sets
for various values of k,y, kyy, k,, made a giant table, | will show you some examples of some

small tables in the next week but they made a giant table and all they did was they put a one



hidden layer now they approximate the result of this all these data collected using just twenty

neurons turns out that is sufficient which is remarkable actually.

But for this range it turns out it was just sufficient to run with this simple case okay so once
they did that, they now have a full ann. once you do that you actually can now estimate the
principal thermal conductivities of the test sample okay now how do they do that.
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Fig. 4. Components of test sample setup.

you see here is the setup we actually now have a forward model they did something slightly
clever with the forward model compared to what | said but let us forget that they took a forward
model and the forward model is the ann. now forget the ANN for now. now only assume that
you have the forward model how do we solve the inverse problem?
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We actually now have to measure temperatures just like in our slab problem we were measuring
six temperatures here they measured you can see up to thirty-two temperatures okay. so let us
say thirty-two temperatures or nineteen temperatures or something around that okay. So, they
measure around nineteen to thirty-two temperatures | think I might be wrong or it might be
nineteen temperatures or so they measured a certain number of temperatures

(Refer Slide Time: 34:19)
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the data acquisition system kept outside the chamber. These
feedthroughs are specially designed and vacuum sealed for high
vacuum application. The basic difference between an electrical
feedthrough and a thermocouple feedthrough is the material of the
metal pins being used. While for an electrical feedthrough copper
pins are sufficient, a thermocouple feedthrough has pins of the
same materials as of the thermocouple pair in order to prevent
stray voltage generation due to dissimilar junctions, A set of fluid
feedthroughs is used to circulate constant temperature cold fluid
into the liquid cooled plate kept inside the chamber. It is made
indigenously by drilling two through holes on a stainless steel
flange and passing two (one inlet and one outlet) 6.35 mm (1/4in.)
diameter copper tubes through it. The tubes are brazed on to the
flange to obtain a vacuum tight fitting, The inner (vacuum) side of
the copper tubes is then fitted with double compression ferrule
fittings and connected to the liquid cooled plate through flexible
braided stainless steel hoses. The outer (open atmosphere) side of
the copper tubes is fitted with push on type fittings to which the
cold fluid circulator is connected using insulated flexible viton
tubing, The test sample is assembled on to an aluminium cold plate
of dimensions (200 x 200 x 14(all in mm)) with a copper frame
having an outer dimension of 180 x 180 x 15 (all in mm) with a

posedness can be reduced using prior regularisation and|or engi-
neering intuition. In the present study, the inverse problem aims at
minimising the difference between the measured and computed
temperatures (obtained from solution of forward problem using
assumed values of principal thermal conductivities) at the pre-
determined locations in a non linear least square sense, as given by

the objective function mentioned ip Eqn. [8) using a hybrid opti-
misation technique. JJI Cwnl an

by
i

In Sag temperatures are measured at 32
predetermined locations (18 on the top and 14 at the bottom of the
test sample). These locations are determined using sensitivity
studies conducted by evaluating the Jacobian matrix of tempera-
tures with respect to ke, kyy and k, at all the measurement loca-
tions respectively. The temperature sensor locations are depicted igs
Fig. 5 and the exact coordinates of the thermocouple posuionsg?il }
listed in Table 1, Symmetry conditions as seen from Fig, 5 facilitate””
the use of 19 effective sensors (temperature measurements) to be <<
used for estimating the parameters namely Ky, kyy and k. Smtéf )

A

el A,
kg ka) =2 3 (e T

=] -

Now all you need to do is to say that | want my model | want my model parameters | want Ky,

kv, K,, such that T estimated is different from the ground truth so T simulated basically is the

vy
ground truth and T estimated is whatever we are predicting the temperature to be for this k.,

Ky, K,, Okay.

yy
So, the ground truth is the x sorry | think I used the notations wrong T e in this paper this is why
it is important to know is experimental which is the ground truth and we have simulated is
actually our estimate or what we call T-hat. so | just call it T-hat here just for your clarity so
you actually take the experimental temperature and then you take your model and ensure that
the two of them are as close by as possible now how do we do the model we already know that
for the model if I give kyy, kyy, kK, it can give me an estimate okay so once you give an estimate
compare it with the actual experiment if that does not work out correct the model. Now it is for
this correction that they use genetic algorithms.
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Table 2

So here is the whole flowchart, you start you give some guess this you will see is the standard
inverse process you have a trained artificial neural network once again | will emphasize this is
simply a surrogate forward model. If you had huge computer power you do not need an ANN
okay all you need to do is run the full CFD okay if you do not want to run the CFD you run an
ANN you run the ANN, this ANN gives you T s you have experiments okay. you just conducted
the experiment that gives you T e. now once this does not match if it is not lesser than a specific
error that we want then you correct so GA the genetic algorithm is for correction basically for
optimization so forget all that because we did not do genetic algorithms here but sufficient to

say genetic algorithms are basically just an optimization algorithm.

Instead of gauss newton or gradient descent you use genetic that generates the next guess just
like we had w equal to or k xx would be equal to k xx minus alpha del j del k xx instead of that
genetic algorithm has a different way of getting there then next guess goes to the ANN and it
goes here and you keep on going in the cycle till you get some optimal ky, kyy, k2. S0, in this
video we saw that a family practical problem and this can be utilized in various practical
problems. you can actually use ANNS as a substitute in order to instead of simulations in order
to guess the forward model, you can use ANNSs to guess the forward model. as I said I will show

you a very simple example of this in the next weeks simulation.

But this is the best that we can do it turns out you can do something even more clever which is
where we come to physics informed neural networks and I will demonstrate that or | will talk

about that in the next week or next video thank you.



