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Welcome back. This is week 10 of Inverse Methods in Heat Transfer. We were looking at the 

back propagation algorithm in the last video and we will continue our exploration of the back 

prop for the multi-layer multi neuron case here. So, this is a simplified multi-layer perceptron 

as we will see this simplified case is actually something that is sufficient for us to write a full 

general algorithm for an MLP. 

 

So, here it is what I have done here is as you can see, we have taken two input neurons, one 

hidden layer and two output neurons and this is sufficient unlike the previous case where we 

took two hidden neurons in a scalar chain you will see that once you understand this case fairly 

well it is fairly easy to understand what is exactly happening in the multi-layer perceptron case. 

 

Now one thing about notation as I had mentioned earlier in the previous video also, we are 

starting with to and then from. So, i is the one where it is going to and j is where it starts for 

those of us who write from left to right this is kind of confusing. 
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So, for example, once again I have ignored all bias units as I did in the last video. we require 

this 
𝜕J

𝜕wij
(k), but if it starts with the second neuron and goes to the first neuron here, I am calling 

it w12 and not w21 so w1 stands for this to here, this of course is w22 and this looks like w21. 

So, we read from here rather than from there. So, all these superscript 1 simply mean. 

 

This is the first layer superscript 2 means the second layer same thing w11 goes from the first 

to the first w21 goes from the first to the second w12 goes from the second to the first and w22 

goes from the second to the second. Now you have two outputs here just to take a general case 

y1̂ and y2̂. Remember now even though y1̂ and y2̂ are two different numbers J is still one.  

 

You would have just like in the soft max case you have y1 and y2 let us say we are taking J as 

to the least square expression again we are going to taking 
1

2
e2 or more precisely I will write it 

as eTe, where e is the vector of (𝑦 − 𝑦̂) or (𝑦̂ − 𝑦) let us keep it that way. Now notice e is 

going to have an e1 and it is going to have an e2. So, when you do e transpose e this is the same 

as 
e1

2+e2
2

2
.  

 

Now, all this is abstracted once we start using a matrix notation as you will see shortly. So, we 

want to do the forward pass. how would we do the forward pass? we already did a simple 

example somewhat similar to this in two videos ago. You take x1 and x2 pass it through this 

do a summation and you get z you get z1 here, z2 here, z1 will give a1, z2 will give a2. Now 

you have a1 and a2 here multiply all these matrices. 



 

You will get again a z1 and a z2 here maybe I should mark that here as well, but this one will 

be z12 and z22. Similarly, this one will be z1 let us write it here set one and z21 and 

correspondingly we will have a12 etcetera. Now we want to calculate z11 and z21 that is the 

very first step of our forward prop. If you are given these two numbers x1 x2 and guesses for 

all these weights that is the way you will go ahead. 
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Now let us first do it in two steps just like we did the forward prop calculation. We are going 

to first calculate the linear. So, if I want z1
(1) = w11x1 + w12x2 that is what I have written 

w11x1 + w12x2. Similarly, z2
(1) = w21x1 + w22x2. so that I have written here, but there is one 

neat thing that you can do at this point which was not so obvious. 

 

When we did the scalar case, you can write this as a matrix. Now this comes out to be a nice 

matrix [
w11 w12

w21 w22
]. So, we can basically write this as the matrix w(1) this entire matrix w that 

1 stand for level 1 and this of course is also a matrix multiplied by [
x1

x2
] that stands for x matrix 

or the a(0) matrix. So, you can write z(1) = w(1)x or you can write z(1) = w(1)a(0).  

 

Now, notice this is exactly the same as what we did in the scalar chain z1 = w1a0 and we have 

the same expression here which is quite neat you have z(1) = w(1)a(0), this express exactly the 

same except now this is a 2 cross 1, this is a 2 cross 2 and this is a 2 cross 1 again. Next, we 



are not just done with the linear part we have to calculate the a's, but the a's are easy. a1
(1) is 

simply the non-linearity applied on w 1 or z1; a2
(1) is simply the non-linearity applied on z2.  

 

So, we simply say a = g(z) or we can say something like a1 = g(z1) where it is understood 

that if a is a matrix that g applies on each element. So, this is what is known as element wise 

operation. So, if g was a sin function so that would be sin of a1 is z1; sin of a2 is z2, if g is 

sigmoid then sigmoid of a1 is z1 and sigmoid of a2 is z2. So, these two put together we have 

at level 1 is g (z) at level 1 and this looks again remarkably same as what we had earlier.  

 

So, a1 = g(z1), z1 = w1a0. So, exactly the same as before. So, all this is the forward 

propagation. Now, you might say, but that is not the forward propagation fully. What happens 

to the next step? So, the next step is going to be exactly the same in fact. 
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So, if we come here, we can now say z(2) = w(2)a(2) and a(2) = 𝑔(z(2)) nothing really changes 

You see the outputs of this layer are related to these exactly the same as this is related to this. 

So, output here is a1. So, you take a0 or x this goes multiplied by w gives z take g of z gives 

a1 multiplied by w gives z2, z2 take g and this gives you a2 and a2 was assumed to be the same 

as 𝑦̂; a2 has two components 𝑦̂ also has two components both these are 2 cross 1 matrices.  

 

So, now let us look at back prop. Now that we have come to the end and we have found out 𝑦̂ 

is there. For multiple layers you will still keep on repeating this, just like we repeated in the 

chain as you can see there is really no difference between the chain in this case, but can we get 



similar expressions for back prop just like we got easily for back prop in the scale or chain can 

we get it easily for this multi-layer case also and then let us go ahead. 
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So, we are now starting with the back prop. So, as usual we will start with the final layer. So, I 

have taken this portion and I am just zooming in there. So, you will see that zoomed in portion 

here there is J, 𝑦̂, y1̂, y2̂ really speaking I should keep an e1 and an e2 here that is how you get 

the J, but that is okay I think you can imagine what is happening there already. 

 

So, now we have inputs coming in from the previous layers. So, what are these inputs I seem 

to have cut off a few things here, but we can write that, that we write it in different color 

w22
(2), w11

(2), w12
(2). So, these are coming in into this layer, but just like last time we first 

calculate e1 and e2. So, (y1̂ − y1), (y2̂ − y2). Now y is 
𝜕J

𝜕𝑦̂
e1because actually speaking you 

should do 
𝜕J

𝜕e

𝜕e

𝜕𝑦̂
 etcetera, if as long as we take J as 

1

2
e2  =  

1

2
eT you will always get 

𝜕J

𝜕e
 as back 

as e.  

 

So, that is going to happen I have already shown you the matrix math in one of the earlier 

videos where we did the matrix derivatives etc. So, let us assume that we are taking in case let 

us say it was not a least square function it was something else, you can still differentiate it. So, 

the assumption here is you have found out 
𝜕J

𝜕e1
 instead of writing it as 

𝜕J

𝜕y1̂
 and y2̂ let me in fact 

write this as.  

 



So, e1, e2 you have got these errors here. Now what we need now is in fact I should be careful 

a1 and a2. We are still with the final outputs of the final moment. Ignore that for now let us 

assume that once we have these errors, I want 
𝜕J

𝜕z1
 here this again is not very clear this should 

be 2 and this should also be z2
(2). 
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Many of the times in this I have dropped the superscripts, but because we are kind of confusing. 

As long as you know where we are looking, we are looking at the final layer. So, this z1 and 

z2 refer to the second level linear activations. So, we come here 
𝜕J

𝜕z1
 we defined that as 𝛿1 

remember and 
𝜕J

𝜕z2
 and that is defined as 𝛿2, how do we calculate it? 

 

Same thing as ever this is 
𝜕J

𝜕a1

𝜕a1

𝜕z1
, 

𝜕J

𝜕a2

𝜕a2

𝜕z2
. This is e1, this is e2 which we just calculated here 

multiplied by 
𝜕a1

𝜕z1
 the relationship is g’. Just like what we did for the scalar chain nothing really 

changes here g of z is what relates z and a. So, g'(z1), g'(z2) if you want to be really, really 

specific this should be z1 at 2 and z2 at 2, but I have skipped that.  

 

Now look at this relationship 𝛿1 = g'(z1)e1, 𝛿2 = g'(z2)e2 you can write this in a compact 

notation as 𝛿 = g'(z)e, but this multiplication is very specific because g'(z) here is [
g'1
g'2

] and e 

here is [
e1

e2
]. In the normal multiplication you cannot multiply these two matrices because they 

are not compatible both are 2 cross 1. 



 

But we define a new multiplication called the Hadamard product this exists within the python 

library MATLAB; it is simply called dot star. So, if you want to do c is a vector which is the 

product of these two then it will be ci = aibi just like if I did c is a + b you would add element 

by element. This is called element by element multiplication also called element wise multiply. 

 

Do not get lost in the notation all I am saying is 𝛿1 = g'(z1)e1 and 𝛿2 = g'(z2)e2 which you 

anyway knew. So, if all I want to do is go from here to here i multiply by a g prime. Now this 

expression again looks the same as it did in back prop in the chain. So, if you notice here, you 

will have delta is g prime into e at the same level. The same thing here except this was a normal 

multiplication because it was a scalar. 

 

It is a dot wise multiplication or a element wise multiplication in this case, because it is a 

product a vector here and a vector here. Now we did this now, but from the final we wish to go 

to the hidden layer this one. So, we have these z's in fact what we have now is 
𝜕J

𝜕z1
 and 

𝜕J

𝜕z2
 and 

what he desires now is simple we want 
𝜕J

𝜕a1
 where a1 is a1

(1) and 
𝜕J

𝜕a2
. If we do that then we can 

do the same trick here and keep on propagating. 
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So, we have 𝛿1, 𝛿2 we want e1 and e2 let us remember that. So, e1 is 
𝜕J

𝜕a1
 again ignore the 

superscript I will not keep on saying a1
(1). So, 

𝜕J

𝜕a1
 now when I want 

𝜕J

𝜕a1
, I can get to this a1 

this activation here from J in two ways either I come through this neuron and come here or I 



can come through this neuron and come here. So, J is affected by this in two ways this path and 

this path.  

 

So, we will accordingly write the chain rule 
𝜕J

𝜕a1
 is 

𝜕J

𝜕z1

𝜕z1

𝜕a1
 or 

𝜕J

𝜕z2

𝜕z2

𝜕a1
. So, 

𝜕J

𝜕z1

𝜕z1

𝜕a1
+

𝜕J

𝜕z2

𝜕z2

𝜕a1
. why 

is this plus there? Because if I put up this a little bit one effect comes through this another effect 

comes through this and these two get added in J because these ultimately both add to contribute 

towards J because that is how derivatives work. 

 

Once you understand this then we can write each one of these quantities what is 
𝜕J

𝜕z1
 that is just 

𝛿1. So, we already have that. So, we have 𝛿1 what is 
𝜕z1

𝜕a1
? 

𝜕z1

𝜕a1
 is simply the weight connecting 

the two which is w11
(2) of course, but I will just call it w11. Similarly, what about 

𝜕J

𝜕z2
 that is 

𝛿2 by definition what is the weight connecting z2 and a1 that is w21. 

 

So, you have w21
(2)  so you add these two and you get e1. So, e1 is 

𝜕J

𝜕a1
 and that is just defined 

we just derived input. Similarly, if I look at 
𝜕J

𝜕a2
 now a2 can come through z1 or through z2. So, 

again 
𝜕J

𝜕z1

𝜕z1

𝜕a2
 or 

𝜕J

𝜕z2

𝜕z2

𝜕a2
; 

𝜕J

𝜕z1
 is again 𝛿1, 

𝜕z1

𝜕a2
. So, 

𝜕z1

𝜕a2
 is w12 and similarly 

𝜕J

𝜕z2
 is 𝛿2 and 

𝜕z2

𝜕a2
 is 

simply w22. 
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But what happens if we write this as a matrix something very neat happens here e1 = w11𝛿1 +

w21𝛿2; e2 = w12𝛿1 + w22𝛿2. If you notice this is exactly the w(2) matrix, but it is transposed. 



So, e1 is not w times delta, but it is w transpose times delta. Again, I will give you a comparison 

with what happens in the chain if you notice here e is w times delta all the only change that has 

happened here is e(k-1)  =  wk
T + 𝛿k because now we are dealing with matrices. 

 

So, this is also called the adjoint. So, what you have here what we have derived here is e1 is w 

transpose times delta 2. These expressions as we saw are almost exactly the same that we have 

in the scalar chain case as you can see you can simply compare with what I did in fact I did 

compare. 
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Now suppose I want the weight update. So, suppose I want ∆w1in fact instead of calling it ∆ 

let me call it 
𝜕J

𝜕w11
. Similarly, I am going to call this 

𝜕J

𝜕w12
. Now what is this if I want 

𝜕J

𝜕w11
 I have 

to take the activation of the input which is x1 multiplied by the error in the output really 

speaking the delta of the output which is 𝛿1
(1)

 that is it. If you have calculated 𝛿1
(1)

 you can 

simply calculate 
𝜕J

𝜕w11
 what about if you want 

𝜕J

𝜕w12
. 

 

Then you do error sorry activation of the input which is x2 multiplied by 𝛿1 of the output. So, 

similarly you can actually calculate 
𝜕J

𝜕wij
 and simply as delta of the output 𝛿i multiplied by aj. 
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So, the full algorithm for the MLP is very straightforward it is almost exactly as what we did 

for the scalar chain and it is as follows. You first do the forward pass z is w times a. So, let me 

show you what is happening here, all we did in the forward pass is z is w times a. So, if it looks 

like this z is w times this activation, this activation is g of this, this z is w times this and this 

activation is g of that. 

 

And you keep on going forward in case you have multiple layers more than that. So, z is w a, 

a is g of z. Calculate the error vector at the final layer then once again we do the same thing 

given an e find a delta. How to find the delta multiplied by g prime. Given a delta or given a 

delta let me show you the next figure probably that is a little bit clear given this delta find this 

e by multiplying with the transpose of this weight matrix.  

 

So, just like forward multiplies by w inverse multiplies by w transpose. In fact, there is a very 

beautiful relationship between this and our general inverse methods. If time permits, I will 

discuss this in Week 12 when we come to some of the advanced topics or at least I give you an 

overview of advanced topics so that is it. Forward is z a, z a so on and so forth inverses e delta, 

e delta and finally you just calculate once you know the a from the forward. 

 

So, a is known from forward, all the deltas are known from the back. You can calculate the 

entire del J del w j. Now notice you just did one forward pass to calculate all the a's and you 

did just one back pass of course it is going through multiple layers, but the pass itself is one 

you go from the input to the or from the input to the output once and output to the input once 

and all the weights can be calculated at one shot.  



 

So, this is why it is extremely clever as well as extremely cheap. So, this is the back prop 

algorithm. Now all through this algorithm we have been using this term g of z and this g of z 

we have assumed usually to be a sigmoid, but there are several common non linearities. 
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As I showed you historically first was this TLU or the threshold non-linearity, for example, g 

of z could be step function of z. So, the step function of z is if z is less than 0 it is 0 and if z is 

greater than 0 it is 1, so this just does this. There is another function called sign of z, s g n of z 

which is 1 and – 1. So, both these were used historically of course neither of these are 

differentiable.  

 

So, these are both not differentiable and as you notice in our back prop algorithm, we have g 

prime z sitting there. So, these are not nice functions for two reasons, it is not just that these 

are not differentiable, but everywhere else their derivative is 0. So, basically this expression is 

going to look like at one point to infinity and everywhere else it is going to look like 0, so delta 

of k will as it is said it will not propagate.  

 

So, this is not useful for back prop neither of these can be used with the back prop. The third 

one is the sigmoid function which we saw sigmoid of z essentially it is an approximation of h 

of z. So, as you can see it is a smooth step function except in the middle it goes to 0.5. This is 

differentiable 
1

1+e-z and the derivative as you remember g'(z) = 𝜎'(z) = 𝜎(1-𝜎).  

 



This leads to a problem. So, the problem is like this at z equal to 0, sigmoid of z is of course 

0.5, sigmoid prime of z is 0.5 into 1 - 0. 5 which is 0.25. Now what is the problem here, the 

problem happens with large number of layers. When you have a large number of layers, each 

layer will get a multiplication by sigmoid or sigmoid prime. So, if I look at the chain each time 

I jump from here to here I get a g prime then another g prime then another g prime.  

 

So, 0.25 into 0.25 into 0.25 as it becomes more and more layers it becomes very small and 

typically on a machine you can only represent till 10 power – 16. So, this is bad for back prop. 

So, large number of layers means poor gradients, because of this g prime sitting there 

everywhere. Now you might say that is only here what about all these places if you notice 

everywhere else the gradient is actually lower it is 0.5. 

 

And then it starts decreasing and you actually go to 0 here. So, here is where you get the 

maximum gradient. So, people had this clever idea of using tan h, tan h is sort of an 

approximation of sin of z goes from -1 to 1 and the slope here is approximately 1. So, almost 

never in practical networks do people use sigmoid they typically use tan h even if they want a 

simple non linearity.  

 

Now since this slope is nearly 1 when you do g prime multiplied by g prime multiplied by g 

prime, you can actually propagate through a large number of layers. So, tan h does not easily 

disappear even if you have a large number of layers. So, in many networks for example what 

are known as RNNs tan h is fairly common even when you have a large number of layers like 

100 layers or something of that sort 100 beat. 
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Now our next one was an even simpler approximation of tan h it is ReLU. ReLU is a really 

popular non linearity in what is known as CNNs or it is it is 0 and then it is z. So, the function 

is g of z is 0 of z greater than 0 and g of z is as g of z is z if z greater than 0 g of z is 0 or z less 

than 0. This has the derivative of course of 1 if z greater than 0 and basically 0 of z less than 0 

and it is not defined at 0. 

 

But as far as neural networks are concerned not having definition at one point apparently does 

not affect our convergence too much. So, you can simply give this as the g prime function and 

it works. In fact, you can check in a code if time permits, I will show one such code to you next 

week. So, you can simply write g of z as another function max of 0 and z. So, when z is positive 

the maximum will be z when z is negative the maximum will be 0.  

 

So, this is an easy way of writing this in let us say MATLAB or python if you want to express 

the ReLU function, rather than writing it with if statements if you write it this way it is faster. 

The final of course is the linear layer which is g of z is z. This is simply called linear activation 

this simply means no non linearity. This is a non-linearity; this is a non-linearity because it is 

not simply a straight line.  

 

So, as I said in practice it is always a good idea to first try ReLU though next week when we 

discuss fins, we will say why ReLUs cannot be used if not that then use tan h and then as a 

final option if that does not work, we will use sigmoid. So, in this week's video we saw how 

back propagation can be done as far as forward propagation can be done in neural networks. 

We also saw this through multi-layer perceptron of course you can use the same idea. 



 

And derive it for far more complex networks, but it is being done automatically in framework 

such as tensor flow or even within MATLAB has what is known as auto grad automatic 

differentiation. In the next week we will apply these ideas and go back to the original problem 

as we saw neural networks themselves solve an inverse problem of finding the weights. 

 

But once you have found the weights neural networks are a data model, how we use this data 

model with an inverse problem is something that we will see the next week. So, I will see you 

in Week 11. Thank you. 

 


