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Welcome back to this Week 10 of Inverse Methods in Heat Transfer. In the previous video we 

did forward propagation within neural networks and specifically multi-layer perceptron. In this 

video we will look at the back propagation algorithm which is a very important algorithm 

historically in order to make neural networks possible on modern architectures as well as 

general practical problems. 

 

So here is the list of topics that I wish to cover in this video you will see there is a large list of 

topics. So, just in case I run a little bit more you know over time compared to what I wish to 

do, split this into two videos, but as of now the hope as I am starting to record it is that I have 

try to cover all these 5 topics within this video. So, the first question is why do we need a 

special algorithm for neural networks for back propagation. 

 

What is it for I had already told you briefly what it was for in the previous video, but I will get 

into some more details in this video. Then I will split the back propagation algorithm into a few 

simpler cases just so that we can understand this final most important case of back propagation 



for a neural network I have found this effective in making sure that people get at least most of 

the important ideas behind what actually happens upon a back prop algorithm. 

 

So, we will first do back prop in linear cases effectively we have already done this when we 

did gradient descent for linear regression, but I will explicitly point out something called the 

delta rule, when we do this, then we quickly extend this to a simple nonlinear case then we will 

look at a case where you have multiple layers, but each layer has only one neuron. These two 

cases can be thought of as just an input and output, but with multiple neurons. 

 

So, these two are complementary cases and finally we will put this together in a neural network. 

These final two topics are effectively back propagation for multi-layer perceptron. 
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So, here is the structure of a neural network you must have seen it multiple times by now over 

the last few weeks. I have an input layer, a couple of hidden layers and an output layer and in 

the last video we saw what happens when we give some input here. So, suppose I give all these 

accesses we do some computations in these middle layers and we finally find out the outputs.  

 

Now the question is when we do that exactly how do we train and find out these weights w. 

So, the algorithm as you have seen a few times is give some input, you give a guess for w this 

neural network you treat this as if it is a black box goes forward makes a prediction 𝑦̂ ground 

truth y, gap is J which is just a function of y and 𝑦̂ and then you take feedback from J and this 

feedback process is this; this is the gradient descent step.  

 



The k + 1 titrations are the kth iteration minus alpha times this gradient. So, what we require 

in the feedback step explicitly is 
𝜕𝐽

𝜕𝑤
. So, if I look at this figure here it has a lot of w so this is 

5 ∗  7 let us say if I ignore biases there are 35 weights here 49 here and about 28 here so around 

100 weights exist within this neural network simple neural network. So let us take a simple 

weight. 

 

So, for example, if I take this one in my old notation this was 𝑤34 and the second layer actually 

I am going to switch notation and I am going to use 𝑤43 second layer. So, the notation we are 

going to use now is if this is i or let me call this j and the next one is i then this is wij and 

whatever layer it is in. So, this is from and the to. So, we actually put where it comes from 

second and where it comes to first. 

 

So, notation is a little bit flipped anyway. So, suppose we want 
𝜕𝐽

𝜕𝑤43
2. So, let us call this 

something let us call this 𝑤43
2 has p. So, suppose we want 

𝜕𝐽

𝜕𝑝
, what is the difficulty in solving 

it. Now, why is it difficult? So, why exactly do we need this back prop algorithm. So, the catch 

here is this the older method or the simplest method of calculating it is finite difference. 

 

You might not be familiar with this name finite difference, but it is a simple ideal. So, the idea 

is this there are about 100 weights here. So, let us say there are 100 obviously there are not 

100, there are more than 100 weights here, but let us say there are 100 weights here so I think 

there are 102 or 112 something of that sort, but let us say there are 100 weights you fix 99 of 

them. 

 

So, suppose you want 
𝜕𝐽

𝜕𝑝
 and there were many other ways and J was a function of, 

𝜕𝐽

𝜕𝑝
 (𝑤1, 𝑤2, . . 𝑝, . . 𝑤100)  =  

𝐽(𝑤1, 𝑤2, . . . , 𝑝 + ∆𝑝, . . 𝑤100) − 𝐽(𝑤1, 𝑤2, . . 𝑝, . . 𝑤100)

∆𝑝
 

So, the way you do it is you perturb just this variable so you do 𝐽(𝑤1, 𝑤2, . . . , 𝑝 + ∆𝑝, . . 𝑤100) −

𝐽(𝑤1, 𝑤2, . . 𝑝, . . 𝑤100) divided by ∆𝑝. Another way to say it is just perturbing this p by a little 

bit maybe if p is 1 make it 1.00001 and see what the output is. 

 

Then this new output will be different from the old output by a little bit divide by ∆𝑝 and as ∆𝑝 

goes to 0 you can estimate what 
𝜕𝐽

𝜕𝑝
 is. So, there is a problem though.  
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This can be accurate computationally in fact the algorithm we are going to discuss is often 

check by checking it against finite difference, but it is expensive. Now why is it expensive? It 

is expensive because it requires one forward pass per weight per iteration. So, remember every 

iteration here requires you to calculate all 
𝜕𝐽

𝜕𝑤
 that is what is meant by per iteration.  

 

Now every weight will require you to perturb it once. So, for example, when I wanted p, I had 

to perturb this p up by a little bit. suppose I want 
𝜕𝐽

𝜕𝑤1
 I will have to perturb just 𝑤1 and keep 

the rest a constant. So, basically you require if there are 100 weights means 100 forward passes 

per iteration. So, typical neural networks obviously have a whole lot more they can have 

thousands of millions and nowadays billions and some of the recent models even have a trillion.  

 

So, just to do one iteration of gradient descent you will have to do trillion passes through the 

network and each trillion requires you to calculate the output of every neuron. obviously, this 

is extremely, extremely expensive and this was the historic reason why for a lot of time neural 

networks were never very big up until people found out a clever way of calculating these 

gradients. 

 

And in fact, we calculate in some sense exact gradients on a computer by using chain Rule. So, 

what people found was there is an efficient way of calculating without doing finite difference 

this efficient way is what is known as back prop and back prop has this magical property that 



even for 100 weights you will still require one forward pass plus one backward pass per 

iteration. 

 

So, if you were doing something like the network, I have shown you, using back prop would 

be 50 times more efficient it is not just a small amount, it is 50 times that is like 5,000 percent 

more efficient if you were taking one day with back prop to do a computation, they would have 

taken 50 days a couple of months nearly and if you take a week here you would take a year by 

using finite difference. 

 

So, that is the computational difference between finite differences just for 100 weights, typical 

networks as I will show you at least one in the next week will have a few thousand weights 

even for very simple cases, in that case you are going to get an efficiency gain of 500 times 

just by using back prop and if I come to million and billion and trillion we cannot even discuss 

you know there are things that would have taken an age of the universe for a single forward 

pass. 

 

So, here is the catch. The catch for back prop is if you are using a gradient based method the 

back prop just requires one forward pass and one backward pass regardless of number of 

weights. So, it is independent of number of weights how many forward and backward passes 

you require and each backward pass is effectively only roughly as expensive as a forward pass 

so that is the reason for back prop. 

 

Let us come to how this is achieved by the end of the sequence that I showed you should be 

able to see at least why back prop requires only one calculation.  

(Refer Slide Time: 11:18) 



 

So, for what I am going to do now, I am going to ignore the bias unit from now on, all the 

expressions that I am writing now are written without the bias unit you should be able to do it 

for the case with bias unit by yourself, but that is not really expected of you at least as far as 

the exam is concerned, but for your verification and knowledge you can try and do that. 
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So, let us look at the general neural network algorithm. The general neural network algorithm 

for a network like this is very straightforward. You first initialize all these weights randomly 

and there are some specific initialization patterns, but we initialize them all randomly. Now for 

each data point in the data set. So, now remember you could have you know in our inverse 

cases typically we have 6, I do a case next week which will have 1000 data points for a fin. 

 



So, let us say you have thousand points here and for all those x's and y's are collected already. 

So, these are the ground rules the inputs and the outputs and you do forward prop like we did 

in the last video. So, you do one forward pass with this you get a 𝑦̂. Once you get a 𝑦̂ you define 

an error I have called this delta, but let me just skip this for now. I will use slightly different 

notation. 

 

So let us say I calculate the error which is (𝑦 − 𝑦̂) in fact we will stick to a slightly different 

notation from the one that I have written here. We will call (ŷ − y) if you see some differences 

between what I am writing here and the later videos or notes that I assume that e is either 

(ŷ − y) or (𝑦 − 𝑦̂) just ensure that I have used sign consistently. I will give you final 

expressions which will be consistent at the end of this video anyway. 

 

So, now once you have calculated this error this is the gap between your ground truth and 

prediction. 
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And then using this error you are somehow supposed to magically calculate this value 
𝜕𝐽

𝜕𝑤𝑗
. So, 

this step of calculating this is what is called back prop as I have written here our expectation is 

if we do it right this entire process of calculating 
𝜕𝐽

𝜕𝑤𝑗
 is only as expensive as a forward pass. 

So, now you repeat for this new 𝑤𝑗 and do a forward prop and keep on repeating this each time 

for all data points.  

 



Take an average or you have already taken this update so this is a stochastic gradient descent I 

will write this here; the way I have written it this is an SGD algorithm which we saw last week 

and we keep on repeating all these steps for new values of w until convergence of gradient 

descent. 
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What do we mean by convergence? You typically plot how J varies with number of epochs. 

Remember one epoch is when you have seen the entire data set. In case you have 100 data 

points here in SGD you would have made 100 updates. So, after 100 updates you have seen all 

data points. Now suppose you plot J versus number of epochs which I will show you next week 

you will see something of this sort. 

 

We will start high then so convergence happens somewhere here where J does not change by 

much. So, you will have to derive or define some predefined convergence limits. So, the key 

step here once again is just to remind you this is just calculating 
𝜕𝐽

𝜕𝑤𝑗
 and let us now go ahead 

and do that in a few steps. 
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And what about 
𝜕𝐽

𝜕𝑒
. So, you can see this here 

𝜕𝐽

𝜕𝑒
 is differential of 

1

2
𝑒2 with respect to e which is 

just e. So, 
𝜕𝐽

𝜕𝑒
 is e, 

𝜕𝑒

𝜕𝑦̂
  is 1, 

𝜕𝑦̂

𝜕z
 is 1 and 

𝜕𝑧

𝜕𝑤1
 is 1. So, all put together you get 

𝜕𝐽

𝜕𝑤1
 is 𝑎1𝑒, I have 

written this here, but let us erase that. So that I was doing it for another reason, but let me not 

confuse. So, overall, what we notice is this 
𝜕𝐽

𝜕𝑤1
  is 𝑎1𝑒. 
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Now I repeat this process and do let us say 
𝜕𝐽

𝜕𝑤2
 and you see that nothing changes except for it 

being 
𝜕𝐽

𝜕z
 

𝜕𝑧

𝜕𝑤2
 . This whole number here still stays as e and this becomes 𝑎2. So, you can see 

𝜕𝑧

𝜕𝑤2
 

is simply 𝑎2 in general 
𝜕𝐽

𝜕𝑤𝑗
 will follow the same rule and it will simply be 𝑎𝑗 times e. 
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So, notice this 
𝜕𝐽

𝜕𝑤𝑗
 is 𝑎𝑗 times e. This is what is called the delta rule and we use this to great 

effect already in linear regression. So, in fact we use this even while deriving the linear 

regression formula. So, 
𝜕𝐽

𝜕𝑤𝑗
 is 𝑎𝑗 times e. Now let us look at the meanings of these terms. So, 

if you look at just these neurons the 𝑎𝑗 neuron here and the output neuron. So, the input neuron 

and the output neuron are connected by a single weight 𝑤𝑗 and that 𝑤𝑗. 

 

And the output of this neuron is e or the error in the output is e. So, we can say that 
𝜕𝐽

𝜕𝑤𝑗
 at least 

in the linear case seems to follow the rule that if I want 
𝜕𝐽

𝜕𝑤𝑗
 I need to multiply the input to the 

weight which was 𝑎𝑗 by the error in the output which was e. So, once again if I want this weight, 

I would multiply 𝑎2 by the error in the output very simple rule it turns out that this is true in 

general even for complex networks. 

 

If time permits, I will prove it if not you just take it on faith that is even in this network if I 

want 
𝜕𝐽

𝜕𝑤𝑗
 of this, all I need to do is this input multiplied by error in this output. Now what is 

error in this output mean that I will clarify later, but the rule in true in general. So, that finishes 

the delta rule for the linear case. Now what happens in the nonlinear case. 
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So, the nonlinear case we have a slight difference, so the difference is this; this is 𝑦̂, 𝑦̂ leads to 

e, e leads J till that everything is true. This is still z and giving g of z is what is 𝑦̂. So, when do 

𝜕𝐽

𝜕𝑤𝑗
 I need to do let us write it this way 

𝜕𝐽

𝜕𝑤𝑗
 is 

𝜕𝐽

𝜕𝑧
 

𝜕𝑧

𝜕𝑤𝑗
 which is what I have written out here. This 

whole portion is 
𝜕𝐽

𝜕𝑧
. So, you can see 

𝜕𝐽

𝜕𝑒

𝜕𝑒

𝜕𝑦̂
 
𝜕𝑦̂

𝜕𝑧
.  

 

So, the z remember is the linear output of this neuron 
𝜕𝐽

𝜕𝑒
 is e, 

𝜕𝑒

𝜕𝑦̂
 is remember e is (𝑦̂ − 𝑦). So, 

simply 
𝜕𝑒

𝜕𝑦̂
 still stays as 1, but what is 

𝜕𝑦̂

𝜕𝑧
 last time 𝑦̂ was z itself, but here 𝑦̂ is g of z some non-

linear function typically a sigmoid at least in the initial examples that we have taken as I have 

shown here, but in other cases it might not be.  

 

So, 
𝜕𝑦̂

𝜕𝑧
 is g prime z it simply means I have taken a derivative of g with respect to z. So, here is 

the formula now 
𝜕𝐽

𝜕𝑤𝑗
 is the old formula which was 𝑎𝑗 multiplied by e multiplied by an additional 

term 𝑔′(𝑧). So, this is an important term here that makes an appearance. So, notice when 𝑔(𝑧) 

is z this simply becomes 1. So, this is b general expression for the delta rule. 

 

Now why is it called the delta rule I will explain that shortly when I go to the multi-layer cases 

it will become a little bit clearer when we go to the final case, but all we have done here is 

taken these two cases. So, now you will notice input of the neuron exit error multiplied by some 

nonlinear function or the derivative of the nonlinear function that took us forward. This looks 



like a more complex formula than it actually is as you will see shortly. Now that we have seen 

a single layer. 
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Now let us take a more complex multi-layer case. I want to point out that this is something that 

I have made up this is not a practical example or an example mostly that you will find in any 

textbook. This is just here in order for you to understand what is actually happening within a 

neural network without some additional complications. So, I am calling this a scalar chain I am 

calling this a scalar chain because it is a neural network it is a chain. 

 

But everything is a scalar okay there is no vector here the input is a scalar, this one is a scalar 

there are no multiple neurons every single thing is a scalar here. So, this is what I call a scalar 

chain. In that case the forward prop becomes fairly simple to actually visualize. So, the forward 

prop goes like this you give x that I am calling the input 𝑎0 is x. Now x gets multiplied by 𝑤1 

so 𝑧1 is 𝑤1𝑎0. 

 

There is no summation it is just a linear sum or it is just a linear transformation 𝑧1 becomes 

𝑤1𝑎0. So, we come here to the linear part remember this is the linear part, this is the nonlinear 

part easier to visualize it we think of the neuron as being broken up into two parts. In fact, as I 

will show later, I would recommend that you zoom in and think of it this way two parts the 

linear part which I am going to denote by sigma gives out z. 

 

And the non-linear part which we can call g gives out a, which I typically call a-hat or simply 

a, let me remove the hat let us just call it a or let us call it 𝑎(𝑙+1) for level (𝑙 + 1) if level l went 



here and a weight went here. The weight got multiplied give z, g of z gives a. So, that is what 

is happening, but useful to think of this hidden neuron or the neuron being broken up into just 

like some a fruit or something or a coconut it is just broken into two parts.  

 

So, z is 𝑤1𝑎0, 𝑎1 here is g of this z. So, 𝑎1 is g of 𝑧1 immediately 𝑎1 gets multiplied by 𝑤2, so 

𝑤2 times 𝑎1 is 𝑧2 here and g of 𝑧2 is 𝑎2 that is what comes out here. Now 𝑎2 gets multiplied 

by 𝑤3 gives us  𝑧3 and 𝑧3 take g of 𝑧3 and that gives us 𝑎3 and finally we say well my final 

output 𝑦̂ is nothing, but 𝑎3 once again y hat leads to e, e leads to j we are assuming no bias 

units as I had mentioned earlier, we are just simply going to assume no bias units throughout. 
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The questions we want to ask is a simple question which is what are the gradients of j with 

respect to the intermediate ways that is what is 
𝜕𝐽

𝜕𝑤3
, 

𝜕𝐽

𝜕𝑤2
, 

𝜕𝐽

𝜕𝑤1
. Another way to ask it if I perturb 

𝑤1 by a little bit how much will that affect J. Notice perturbing 𝑤1 affects 𝑧1, 𝑎1, 𝑧2, 𝑎2 it does 

not affect 𝑤2, 𝑤2 is just a variable it is an independent parameter 𝑧2, 𝑎2, 𝑧3, 𝑎3, 𝑦̂, e and then 

J.  

 

So, we want to trace that entire process the way we are going to do it is reverse the chain of 

causality and that is what we are going to do. These if you calculate 
𝜕𝐽

𝜕𝑤1
 you can calculate delta 

𝑤1 based on gradient descent etcetera. These are the final answers that are desired. Now as it 

turns out to calculate these final answers, we require some intermediate answers.  

 



These intermediate answers are just like last time instead of calculating 
𝜕𝐽

𝜕𝑤
 if I want 

𝜕𝐽

𝜕𝑤1
 well I 

will need 
𝜕𝐽

𝜕𝑧1
 because 𝑤1 did affect 𝑧1 so I need 

𝜕𝐽

𝜕𝑧1
. Now, if I need 

𝜕𝐽

𝜕𝑧1
; 𝑧1 affects 𝑎1. So, I need 

𝜕𝐽

𝜕𝑎1
. Now, if I need 

𝜕𝐽

𝜕𝑎1
 that means I require 

𝜕𝐽

𝜕𝑧2
 because 𝑎1 affect 𝑧2 and so on and so forth 𝑧2 

requires 
𝜕𝐽

𝜕𝑎2
 this requires 𝑧3 and this requires 𝑎3.  

 

So, since we have so many quantities, we are going to give it names whenever there is a 
𝜕𝐽

𝜕𝑧
 we 

will call it delta. So, just like 𝑧1, 𝑧2, 𝑧3 we have 𝛿1, 𝛿2, 𝛿3 with obvious meanings. 𝛿1 is 
𝜕𝐽

𝜕𝑧1
; 𝛿2 

is 
𝜕𝐽

𝜕𝑧2
 and 𝛿3 is 

𝜕𝐽

𝜕𝑧3
. Similarly, wherever we have a  

𝜕𝐽

𝜕𝑎
 we will call it e. So, 

𝜕𝐽

𝜕𝑎1
 is 𝑒1; 

𝜕𝐽

𝜕𝑎2
 is 𝑒2; 

and 
𝜕𝐽

𝜕𝑎3
 is 𝑒3.  

 

So, you can think of our process as being when we go forward, we calculate z and a, when we 

go backward, we calculate 
𝜕𝐽

𝜕𝑎
 and 

𝜕𝐽

𝜕𝑧
. 
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So, I will repeat the figure because we require a reference to the figure here. Let us say I am 

calculating 
𝜕𝐽

𝜕𝑤1
. So, once again remember this 𝑦̂ leads to e and e leads to J. So, in a scalar chain 

it is very obvious to see what we are doing. when I want 
𝜕𝐽

𝜕𝑤1
 I am going to follow this entire 

process of first calculating 
𝜕𝐽

𝜕𝑧1
 

𝜕𝑧1

𝜕𝑤1
 this is after all the same trick that we applied in the delta 

rule.  



 

So, we are going to apply the same rule for the same idea and well 
𝜕𝐽

𝜕𝑧1
 is nothing, but delta 1 

𝜕𝐽

𝜕𝑧1
 our notation was 

𝜕𝐽

𝜕𝑧1
 is 𝛿1 of course that does not mean we have calculated it we have just 

given it a name, but what is 
𝜕𝑧1

𝜕𝑤1
. Notice 

𝜕𝑧1

𝜕𝑤1
  is 𝑧1 how did it come from 𝑤1  ∗  𝑎0 which is x 

and let us call this 𝑎0. So, if 𝑎0 is multiplied by 𝑤1 it gives 𝑧1 this means 
𝜕𝑧1

𝜕𝑤1
 is nothing, but 

𝑎0.  

 

So, we get 
𝜕𝐽

𝜕𝑤1
 is 𝛿1 ∗ 𝑎0 which looks just like the delta root. Notice, input we want 

𝜕𝐽

𝜕𝑤
 its input 

to this weight which is a 0 multiplied by the error in the output, but the error in the output here 

is simply delta error in z. You can think of it as the error in z. So, this portion is the immediate 

output of this neuron is z and the error in that or basically is what we call 
𝜕𝐽

𝜕𝑧
 well we call this 

the error it is not really the error, but it is something like the error. 

(Refer Slide Time: 36:05) 

 

So, this is exactly the delta rule except all it is saying is multiply 𝑎0 multiplied by the delta here 

that will give you 
𝜕𝐽

𝜕𝑤1
. So that is the delta rule so as I have written here, we can interpret delta 

1 as the error or delta in 𝑧1, but unfortunately, we know 𝑎0; 𝑎0 is how we started the calculation. 

We started the calculation 𝑎0, but we do not know 𝛿1. 
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Now how do we calculate 𝛿1? 𝛿1 is 
𝜕𝐽

𝜕𝑧1
, but 

𝜕𝐽

𝜕𝑧1
 can now be thought of as one more step when 

I want 
𝜕𝐽

𝜕𝑧1
 I will calculate 

𝜕𝐽

𝜕𝑎1
  and multiply by whatever connects the 2. So, here it is 

𝜕𝐽

𝜕𝑧1
 is this 

whole calculation 
𝜕𝐽

𝜕𝑦̂

𝜕𝑦̂

𝜕𝑎3
   etcetera ignores all that just think of this as 𝜕𝑎1 all I am saying is 

𝜕𝐽

𝜕𝑧1
 

is 
𝜕𝐽

𝜕𝑎1
 
𝜕𝑎1

𝜕𝑧1
 that is a fairly non-controversial statement. 

 

So, that is what is written here 
𝜕𝐽

𝜕𝑧1
 is 

𝜕𝐽

𝜕𝑎1
 
𝜕𝑎1

𝜕𝑧1
, but what is 

𝜕𝑎1

𝜕𝑧1
 how was 𝑎1 calculated from 𝑧1 it 

was simply 𝑎1 is 𝑔(𝑧1) so 
𝜕𝑎1

𝜕𝑧1
 is simply g prime of this. So, now you notice 𝛿1 is 

𝜕𝐽

𝜕𝑎1
 that has a 

name this is just the name it is not a calculation it is a name it is 𝑒1  ∗ 𝑔′(𝑧1) so now notice 
𝜕𝐽

𝜕𝑤1
 

was 𝑎0𝛿1. 

 

But 𝛿1 was 𝑒1  ∗ 𝑔′(𝑧1). So, once again we have the question, I accept this for calculating this 

you needed 𝛿1 for calculating 𝛿1 you needed 𝑒1, but what is 𝑒1 we only have reposted to the 

figure again if I want 𝑒1 here I need 
𝜕𝐽

𝜕𝑧2
 because that is the next calculation to this one. 

(Refer Slide Time: 38:20) 



 

So, we will go back here we will say okay I want 
𝜕𝐽

𝜕𝑒1
 or sorry 

𝜕𝐽

𝜕𝑎1
 and 

𝜕𝐽

𝜕𝑎1
 is nothing, but 

𝜕𝐽

𝜕𝑎1
 is 

𝜕𝐽

𝜕𝑧2
 because that is the next calculation multiplied by 

𝜕𝑧2

𝜕𝑎1
. Now this simply had a name this was 

called 𝛿2, but what about 𝑧2 and 𝑎1 what is their connection. So, let us go back here this is 𝑧2 

here 𝑎1 here and how was it created 𝑧2 was created by 𝑤2𝑎1, therefore 
𝜕𝑧2

𝜕𝑎1
 is nothing, but 𝑤2.  

 

So, we write that here 
𝜕𝑧2

𝜕𝑎1
 is 𝑤2. So 𝑒1 now becomes 𝛿2 multiplied by 𝑤2 very good. So, now 

we have 𝑒1 here which requires 𝛿2 what does 𝛿2 require 𝑒2, what does 𝑒2 require 𝛿3. What does 

𝛿3 require 𝑒3 and what does 𝑒3 require simply 
𝜕𝐽

𝜕𝑦̂
. So, this is the entire process of back prop. 

So, it will look strange, but let me now show it to you step by step. 
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So, the way we do it is as follows. We want 
𝜕𝐽

𝜕𝑤1
. 

𝜕𝐽

𝜕𝑤1
 is simply this input multiplied by this 

output. So 𝛿1 ∗ 𝑎0 that I prove, 𝛿1 is g prime multiplied by 𝑒1. So, we calculated that if we want 

𝑒1 the connecting link between 𝑒1 and 𝛿2 is 𝑤2. So, 𝑒1 is delta 𝑤2 times 𝛿2 if I want 𝛿2 I want 

𝑒2 𝛿2 is g prime times 𝑒2. Now you can see here some kind of recursion relationship here if I 

want 𝑒2; 𝑒2 is simply 𝑤3 times 𝛿3. 

 

And if I want 𝛿3, 𝛿3 is simply g prime times 𝑒3. Now what is 𝑒3? The final error in the output 

which is simply (𝑦 − 𝑦̂) or  (𝑦̂ − 𝑦) as we define them. So, here is the full algorithm for the 

back prop in scalar case. So, you might say okay wait a second you only calculated 
𝜕𝐽

𝜕𝑤1
 what 

about 
𝜕𝐽

𝜕𝑤2
, 

𝜕𝐽

𝜕𝑤2
 follows the same logic 

𝜕𝐽

𝜕𝑤2
 is simply going to be the input which is a1 multiplied 

by the output which is 𝛿2.  

 

Now a1 was calculated during forward prop and 𝛿2 was calculated during back prop so there it 

is. Now notice for each one of these weights just like in the forward calculation for each the 

entire forward prop was done only once. The entire this is the back prop this is done only once, 

we do not do different calculations for 𝑤1, 𝑤2, 𝑤3 we simply calculate from here 𝛿3, 𝛿2, 𝛿1 

finish. 

 

And then after that you can calculate 
𝜕𝐽

𝜕𝑤2
 as 𝑎1𝛿2 and similarly 

𝜕𝐽

𝜕𝑤3
 as 𝑎2𝛿3. 
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So, let me write the full algorithm for the scalar propagation. We first do one forward pass with 

the current weights. So, this is important we do the forward pass with the current weights. So, 

I have written that calculation 𝑎0 is x then you multiply that get 𝑧1𝑎1, 𝑧2𝑎2, 𝑧3𝑎3 so on and so 

forth to keep on going till the end till you find out error. So, let us say it is 𝑒3 at this point.  

 

Now you start the back prop. How do you start the back propagation from 𝑒3 calculate 𝛿3 from 

𝛿3 calculate 𝑒2 𝛿2, 𝑒1 𝛿1 there it is. Once you have all the deltas and the e's then immediately 

in fact once you have all the deltas the e's are just intermediate calculations. Once you have all 

the deltas you can calculate all the 
𝜕𝐽

𝜕𝑤
. So, the formula that comes is in the same location 

remember if you have 𝑒𝑘  coming here you have 𝛿𝑘 coming here.  

 

So, the relationship between the two of them is simply through g prime. So, delta is g prime 

multiplied by 𝑒𝑘 as I have drawn in this figure here. Now, if you want to go to the next step so 

the output here is delta k and you want 𝑒𝑘−1 we know 𝑒𝑘−1 is 𝑤𝑘𝛿𝑘 because the a here and the 

z here were related through w. So, similarly 𝑒𝑘−1 is 𝑤𝑘𝛿𝑘 then you keep on repeating this two-

step dance just like in the forward prop. 

 

You do linear g linear, linear g in the reverse thing you do g or g prime linear, g prime linear, 

g prime linear it is an exact analog of what happened in the forward prop. 
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Finally, we do the weight update between the two weights using the delta rule. So, you have 

𝑎𝑖−1 and you have 𝛿𝑖𝑤𝑖 connects the two and you have 
𝜕𝐽

𝜕𝑤𝑖
 is 𝑎𝑖−1 multiplied by 𝛿𝑖. So, this is 



back prop through a scalar chain and I hope you got at least some idea of how back prop is 

being done. Now the next topic is to go to the actual multi-layer perceptron case, but since this 

video has been long as I said at the beginning, I will move that to the next video. So, I will see 

in the next video. Thank you. 


