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Welcome back. This is Week 10 of Inverse Methods in Heat Transfer. We are in the second 

video. In the last video I had talked briefly about why we try to use deep networks giving you 

a simple example of the XOR gate. In this video, we basically aim to go through a forward 

pass, I had talked about the forward model of the neural network we want to do that. I will also 

give you brief introduction this is going to be very brief and possibly slightly inaccurate on 

what the idea is. 

 

I mean why does the neural network have any relation whatsoever to biology or to our brain. I 

do want to point out that in my personal opinion this analogy between a brain and a neural 

network is quite stretched. Nonetheless, this was the historical reason how neural networks 

came to be and by now I take a very at least in this course, I am going to take a view that neural 

network is simply a function approximation like a Fourier series or something of that sort. 
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But nonetheless since there are biological reasons for this, let us take a look at that. So, when 

you look at the biological picture here it is on the left-hand side. So, something like this 

basically exists within our brains quite a complex picture, you have a whole bunch of cells and 

there are electrical impulses whenever you have a thought when you see something there is an 

electric impulse that moves in a specific direction.  

 

So, this thing this line in the middle is somewhat of the concrete example of what we draw as 

weights and the electrical impulse is basically our forward propagation on what we basically 

simulate as if it is a computation and when you look at it you have the cell body and these 

dendrites are some kind of network connections, we will see them as network connections 

which receive messages from other cells.  

 

Axons pass messages away from the cell. Now within this there is something called the action 

potential which is the electric signal which travels down an axon and when it comes to the next 

cell it either activates it or it does not. Now one thing which we do know is something called 

neurons that fire together, wire together this kind of information you would have probably 

heard.  

 

These messages are mediated by these connections that go in the middle and you have 

something called the myelin sheath which you can see here. This myelin sheath basically tends 

to reinforce or and make communication easy between two cells that fire together very 

frequently. So, the idea is supposed to be similar to increasing the weight between one neuron 

and the other neuron in case it turns out that the connection is really strong.  



 

So, these are some basic ideas that people took the idea of weights in the middle of two neurons. 

The weights can actually grow stronger or weaker just like myelin sheath enables and maybe 

other biological mechanisms enabled and the fact that even if something hits this need not fire 

fully. As I will show you later and as I have shown you earlier also just because things sum up 

through all these connections. 

 

So, you can see these as incoming weights to this neuron and just because they sum up together 

to a certain value does not still mean that it has to fire. There might be a step function after a 

certain amount of activation has taken place then the neuron might fire otherwise it might refuse 

to fire just like a human being has to be shaken up a little bit before they wake up.  

 

Now all this is just a brief and like I said a slightly inaccurate description of biology because I 

am not a biologist obviously. So, here is looking at this kind of picture something similar to 

this is the first attempt that was made for neural networks. I have not covered the history of 

neural networks here it is the course is not meant for that, but as you can see it is at least a 

history. 
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So, the first mathematical model of a neuron was like this you will see it looks remarkably 

similar to what we are doing except all we do here is this was called the McCulloch-Pits 

Neuron. You will basically have ∑ xi. Notice there will be no wi here you simply sum up x1 +

x2 + x3+. .. etcetera and you just check whether it is greater than a specific threshold.  

 



So, now our current notation we will simply do a sigma all these weights are 1, these are xi you 

sum these up and then you run through a step function that is basically the McCulloch-Pits 

Neuron. It was the first mathematical model as you can see the output is either 0 or 1. The idea 

was to simulate simple logic gates and as I told you put together an entire circuit based on these 

simple logic gates.  

 

Once again you can simulate AND or OR etcetera, but you cannot simulate XOR with this kind 

of behavior you really cannot, but you can get AND, you can get OR and stuff like that with 

this kind of neuron.  
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Now after this the next major breakthrough was the Rosenblatt Perceptron and what we are 

going to discuss later on today in this video something called the multi-layer perceptron based 

on this word perceptron which sits here which is basically for perception. So, now you notice 

you have w transpose x very much like what we had before. Now you have these ways which 

are sitting here.  

 

So, now you have ∑ wixi. So, it took 14 years to go from ∑ xi to ∑ wixi which is the usual 

thing which we use in linear regression. Now apart from that you can see in the symbol this is 

basically a threshold. It is called a TLU, a threshold logical unit. All it does is you know you 

check once again whether z is greater than some value let us say Z is greater than 0.5 implies 

1, Z less than 0.5 implies 0 something of that sort usually this limit will be actually 0.  

 



We are not going to do either Rosenblatt Perceptron or the McCulloch-Pits Neuron. The reason 

I am showing this is to show that these ideas have been around for a long time and what we are 

doing is one very simple small change. So, instead of just going from sigma to this we actually 

people added a differentiable unit. So, this one obviously is not differentiable because it is a 

simple step function.  

 

So, we basically put a sigmoid unit which is an approximation of this step unit. So, we use a 

sigmoid unit which is an approximation of the step unit and that makes a huge difference. So, 

we take output from there and then give feedback as I showed you in the last video. So, this 

was the Rosenblatt Perceptron it is only putting together a series of Rosenblatt Perceptron that 

we get the multi-layer perceptron which we will look at shortly. 

(Refer Slide Time: 08:00) 

 

But before that here are some notations that we will be using as we go forward. Some of the 

notation can be confusing based on what exists in the literature. I am going to use typically w 

for all the unknown parameters, many people use theta and the literature. If we use theta, it gets 

easily confused with temperature so we are not going to use theta I am going to use w. So, 

typically notice we have z = w1x1 + w2x2 + w0x0.  

 

Another way of writing it is w1x1 + w2x2 let us say there are only two units + b. This whole 

thing is called b where b is w0 and then we do not multiply by an x0 which was always 1. So, 

this is called the weight I will say this again in this video and this is called a bias. So, this 

notation I am going to call the algebraic notation as I said earlier, some people might write w 

dot x though this is almost never there. 



 

But you can use it that way because w is a vector w0, w1, . . . , wn, x is a vector where one of 

these is a constant and others are variables 1, x1, . . . , xn if you take a dot product you again get 

this w1x1+. . . +w0x0 also in the last video couple of videos I have used this WTX, w is a 

column matrix and x is also a column matrix if you take w transpose multiplied by x you will 

again get w. x. This portion is called b, the bias by several people and w1 through wn are called 

weights. 
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So, once again I will write this here there is a company in fact called weights and biases which 

deals with tracking various machine learning experiments that you have done. So, this is w, 

this is b. So, depending on how a code is written some people write wTx + b and some people 

simply write w transpose x in case they write plus b then this w will consist of only w1 through 

wn and will not have w0. 

 

So, in packages such as tensor flow it is sometimes easier to consider the bias separately, rather 

than in a unified fashion. I am primarily going to use the notation where w0 is already included 

and b is thrown out. It is easier for me to write it that way. So, I am going to use that notation 

at least for the rest of this course. 
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The universal approximation theorem as I showed you last time, simply says that if you have 

sufficient data neurons, we can approximate any function to any desired accuracy. 

The point here is each one of these things is basically a perceptron except you will usually not 

have the step function, you will usually have something smoother, but that is also not necessary 

you can put a step function. 

 

And this will still be called an MLP, a multi-layer perceptron, instead of that you can use a 

sigmoid etcetera, etcetera. The key thing here of course is the universal approximation theorem 

that is what lets us use neural networks easily. So, neural networks were inspired as I said here 

by biology and the structure of this kind of connection that is each neuron is connected to many 

other neurons. 

 

But in the brain, it does not look like layer by layer, no it is not as systematic as this there might 

be some connections which are missing, some might be connected, but etcetera this is simply 

a MLP is a nice abstract structure that we can use systematically in order to solve neural 

network problems. 

(Refer Slide Time: 12:01) 



 

I had shown this a week or so ago, but this is just to again reinforcing your mind that every 

picture corresponds to some algebra and every algebra corresponds to some picture. If I want 

to represent w0 + w1x, I can do so with a figure or with algebra. So, the figure is here w0 +

w1x, the algebra is here. Similarly, this figure corresponds to some algebra. So, when you see 

this, you should not think picture you should actually think that this is a mathematical function. 

 

So, this entire picture represents a mathematical function. what function does it represent? now 

that is a little bit hard to write you can think of this as a series or as a function of a function. 

So, the way we do it is if you take this neuron this neuron gets input from all these 5 neurons 

then you do w1x1 + w2x2 + w3x3 + w4x4 + w5x5 sum those together and then run it through 

some function g. 

 

What that function is depends on how the neural network is specified I will talk about in the 

last video of this week, I will talk about various functions you can use or have been used 

successfully with the neural networks, but the earliest one was the sigmoid. The sigmoid as is 

written here is the same thing that we used for logistic regression 
1

1+exp(-z)
 or 

1

1+exp(-x)
 , it goes 

to 0 to 1. 

 

This is basically a smoother version of our step function. So, instead of using a step function 

which is not differentiable you would like to use a sigmoid. So, from here to here is a sigmoid 

and that is it. So, you calculate this neuron it gives an output we call it a1 this one gives an 



output we call it a2 a3 just like we did with the XOR gate and let us say a this is 7 neurons so 

a7 and when you look at this one gets an input from a1, from a2, from a3 from a4. 

 

So, you can write an actual mathematical expression which will involve lots and lots of 

unknown parameters. When you look at this is finally still going to be a function of all these 

five input neurons except the expression is going to look a little bit messy other than that there 

is no big deal. So, it is just a long, long expression this one let us call this b1, b2, b3 etcetera 

up till b7. 

 

You can write this in terms of b1 through b7 you can write b1 through b7 in terms of a1 through 

a7 and a1 through b7 can be written in terms of x1 through x5. So, in the end this is always a 

function of x1 through x5. So, this is some function of x1, x2, x3, x4, x5. The point of course is 

the entire thing is just a diagrammatic representation of a mathematical function. 
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So, one important thing in terms of pictorial notation, so this is basically a pictorial notation, 

weights and biases as I talked about. Now typically what is shown in a network is something 

of this sort. The biases are almost never explicitly shown something in this sort is what is 

shown, but what it really means is there is an extra unit here which feeds into all these. So, this 

is basically the bias unit. 

 

So even though only this is what is shown what it means is there was a1 here there is x1 there 

was also a w0 here and a w1 and the actual picture is what is shown here. So, this unit is 

basically called a bias unit sometimes denoted as I said by b sometimes by w1 that is because 



why we do this is when you draw this it means you might have to connect this unit and this 

unit, but that is not true. 

 

The bias unit has no inputs coming from anywhere else because it is always a constant. The 

bias unit is always a constant so this one is always a constant it is not as if something causes 

this one to be what it was, whereas if you look at anything else in the middle like this neuron. 

This neuron bought some input here, but if I draw a bias unit at the top that bias unit at the top 

will not have this.  

 

So, this will not be there that is because it is 1 why should it get an input from anywhere else. 

So, this is just some pictorial notation. 
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So, let us take a simple example we have a single neuron. Let us assume that all the weights 

are 1. So, all these weights that are shown here this one, this one every single weight here is 

one I want to know what is the output of this single neuron. So, this is like I said from biology 

to computation. How would we actually compute the output of this neuron. 
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The solution is simple we want the output of this neuron a-hat all the weights are equal to 1. 

So, the output has always remembered two parts. The first part is the linear part which we also 

call the linear activation. So, the linear activation simply is w0 + w1x1 + w2x2+. . . +w5x5. 

So, we can write that down here w0 + w1x1 + w2x2+. . . +w5x5, w0 is 1 that is because all 

weights and biases are equal to 1.  

 

So, let us assume w0 is 1 it multiplies 1 of course so that is 1 then it is one times 0.1 + 1 times 

is 0.2. So, this whole thing comes to 2.5. The next part always remember is we have two parts 

this 𝑎̂ actually comes as two portions there is one summation which we did here and there is a 

g, which is a non-linear function. You can also think of it this way you had multiple inputs 

coming sum them and what came out was z.  

 

Now z goes into this nonlinear part g and what comes out is 𝑎̂ = 𝑔(𝑧). So, this is what happens 

in a forward pass through a neuron these two steps. So, the reason I am spending time here is 

this becomes really important once we do the back pass or when we do the back propagation. 

So, linear fairly simple this portion z was 2.5, the nonlinear activation is 𝑎̂ = 𝑔(2.5), g(z)  =

 
1

1+e-z.  

 

So, 
1

1+e-2.5 and if you calculate it this comes to 0.9241. So, we can basically see that what comes 

out here is 0.9241. I request you to go through this example a couple of times just to understand 

what is happening. Remember that the input of a network is a vector as in you have multiple x 



is coming in, but what comes out is one single number. So, the input is a vector, but the output 

is a scalar to every neuron. 
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Now, for this video alone I am going to use a weights notation, that is because the first-time 

people see this kind of calculation, there is a natural way in which they think. If you write left 

to right this is the way you will think I am going to show you that weight notation, but as it 

turns out for writing code and for writing matrix expressions it is actually useful to use 

something else, but let me just write for this video. 

 

I am going to use this notation, but in general I will show you a notation which is slightly 

different. For this video what I am going to assume is this. So, let us say I have this weight I 

cannot call them w1, w2, w3, w4 and keep on writing them that becomes too long. You need 

some nice notation to denote which layer we are in and which neuron is connected to which 

neuron. 

 

So, if I look at this, I am going to call the bias unit which is never shown as I showed you or as 

I told you as the 0th unit this is x0 this will be a0, this will again be a0 and I will mention what 

this a0 is shortly, but this will be x1 up until x5, x1 through x5. This one here we are going to 

call a1 because it is the first neuron this one, I am going to call a2 and this will go till a7. 

 

And typically, there is 𝑎̂ which is put even if it is not put it is okay. So, let us just call it a1, but 

I want to call this also an if this is a1 and this is a2 we need something else. So, we will put a 

superscript I will call this a1
(1), I will call this a1

(2) or some people call this a1
(2) to a1

(3) and 



this one has a1
(1) you can choose whichever way you want for now let me call this a1

(0) and 

this is a2
(0) by that trick this will be a0

(0). 

 

Now what do I call this weight here. So, this weight here is in the first layer, this is the first 

layer. This is connecting the left neuron which is 1 with a right neuron which is 1 so we will 

call it w11 and it is in the first layer so I will call it 1. Similarly, this one is connecting the first 

neuron to the second neuron here. So, this will be called w12, but I should not get it confused 

with this one which is also a w12, but this is in the first layer. 

 

This one on the other hand will be in the second layer. So, this is w11
(1) this one is w12

(2). So, 

just as an experiment if we have this, we simply count this is 1, 2, 3, 4. So, this is w4 and this 

is the third neuron in the output layer w43 and this is the first layer, second layer, third layer so 

this is w43
(3). So, wij

(l) is the weight connecting the neuron i of layer l to neuron j of layer l + 

1. 

 

So, this is bias units are the 0th neurons. However, in general this ij is unfortunately or it is 

called wij
(l)  that is the order is flip, but for this video we will stick with this the i represents 

the from neuron and j represents the two neurons. Now why we use this will become clearer as 

we go on to back propagation because it makes matrix computations a little bit easier. So, 

slowly that is the reason it is used that way, but some books might flip the notation. I am just 

telling you what we are doing in this video. 
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So, let us do a simple forward pass calculation here instead of doing just one single neuron I 

am going to do a network kind of situation. 
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So, the situation is like this, we have a simple network again the bias units are not shown and 

we are given that x equal to 0.5 and we want to find out the output of the given neural network. 

We assume that all non-linearities are sigmoid. So, we assume that all non-linearities are 

sigmoid usually in many cases in fact in the final layer people do not use sigma x, people use 

linear activations that is there is nothing further that happens. 

 

But let us say we are using sigmoid in all neurons. Now of course we need all these weights, 

we do not know these weights we also need the bias. So, let me first give you two of these so 

it said w01
(1)  is 1. So, remember goes from the 0th unit which is the bias unit to the first unit 

and it is in the first layer this is 1 and the second one this one is given as w02
(1) is 0.8. So, we 

have these two pieces of information.  

 

Here is the full data which is given for this network, you are given w01 you are given w02. This 

is these two weights w11 which is this weight w12 which is this weight and then in the final 

layer you have 3 weights because we need a bias unit here also. So, 1, 2, 3 + 4 weights here so 

you have a total of 7 layers here. Let us assume that the activation function everywhere is the 

sigma as I said assume sigmoid non linearity. 
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So, here is the network drawn a little bit more clearly with all the information given here on 

the right-hand side. I would recommend that those of you who are watching it, pause the video 

and try this out by yourself just to ensure that you understand the notation well, it will obviously 

be straightforward once I describe it. The calculation is not hard you just have to make sure 

that you are connecting everything like things to like things etcetera. 

 

Just make sure all the things are properly they are computed. So, we do this systematically we 

first calculate a1̂. So, a1̂ remember is made up of two portions. You first calculate the linear 

portion which is the linear combination of these two and then you calculate the non-linear 

portion. So, we do the same thing we first calculate z1 is so what is z? z1
(1) is w01

(1) multiplied 

by the bias + this w11
(1)  multiplied by x as I have written here this is z1. 

 

You calculate this comes to w01
(1) is 1 written here, multiplied by 1, w11

(1) is 0.7 into 0. 5. 

So, if you do this calculation, you can write down here. 
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So, we basically get z1
(1) is 1.35 from here you then calculate the non-linear portion first the 

linear motion then the nonlinear portion. So, once you calculate this you get a1̂ or a1
(1) is 

basically 0.7941 it comes by doing 
1

1+e-1.35 because it is the sigmoid which we decided was the 

nonlinearity in this unit. 
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Now similarly we now need to calculate a2
(1) which is this thing here sorry a2

(1) which I have 

written the final answer as 0.7773 we can see the calculation for this 0.7773, it is a 

straightforward calculation just like before, no major mysteries here. This has a linear path 

which is z2 and it is g of z2 which comes out as a2 and this is a simple calculation it is fed by 

x and by 1. 

 



So, w02 times x0 which is simply 1 + w12  ∗  x1 which is this is now you can see the weights 

w02 is 0.8 and w12 is 0.9, so you write 0.8 times 1 + 0.9 times 0.5 which is 0.8 + 0.45 1.25 

z2
(1) is 1.25 calculate the sigmoid of that it comes to 0.7773. So, this is also the straightforward 

calculation. Now our final job is to calculate this; this is what lets us calculate the 𝑦̂ which we 

are finally interested in. 

 

So, we want 𝑦̂ and 𝑦̂ is basically exactly the same as a1
(2)  that is what we throw out as 𝑦̂. So, 

this one has input from 3 places w01
(2), w11 and w21 and it multiplies just like the normal 

perceptron by the respective weights. So that is what we have here w01 * x0 + w11*a1 +

w12*a2. So, fairly simple do the calculation you can see that I have written exactly the same 

thing as what existed in the weights here 0.7 times. 

 

Now remember this value was 0.7941 which we already computed and this value was 0.7773. 

So, you add all those you get the linear activation as 2.255, do a non-linearity on top of that 

you get a1
(2) is 0.9051. So, as you can see the network was fairly simple. The forward passes 

once you are given this value move here calculate this value. Once you are given that calculate 

the final layer. 

 

This is regardless of whether there is 1 layer, 2 layer how many our layers the computation 

takes place in exactly the same way. So, what we saw in this simple example was that you can 

do a simple forward pass through the network. We will see later in this week that you could 

have done this via a matrix also or matrix operations rather than doing separate scalar 

operations here and that makes things more effective. 

 

Overall, in this video you simply saw why a neural network is defined the way it is and how to 

do a simple forward pass for a neural network and we will now exploit this in the videos to 

come this week where we will also do back propagation. Thank you. 

 


