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Welcome back. This is the first video of Week 10 in Inverse Methods in Heat Transfer. What 

I wish to do in this video is to give you a brief introduction to Week 10, but also a few additional 

topics are there, specifically we will be looking at the XOR gate, once again we finished with 

the XOR gate in the last week, but I will sort of naturally lead you to this sort of structure for 

neural networks that you can see here, which is one input a few hidden layers and an output 

layer. 

 

This layer is called the MLP or the multi-layer perceptron. MLP stands for multi-layer 

perceptron. In short it basically is a whole bunch of neurons connected in lines and all these 

collections are full and such a connection is also called a fully connected layer. So, there are 

bunch of fully connected layers between the input and the hidden layer, there are every neuron 

in one of the layers is connected to every other layer neuron in the next layer and so on and so 

forth. So, this fully connected MLP is what we will be coming to sort of naturally within this 

video. 
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The main purpose of connecting things this way is we are able to use what is known as the 

universal approximation here, which I had briefly alluded to a couple of weeks ago. The basic 

idea behind the universal approximation theorem is that given sufficient number of neurons, if 

we are given sufficient number of neurons and artificial neural network of the MLP type can 

approximate any function to a given amount of accuracy. 

 

So, if I give a certain amount of accuracy, you can actually find out a sufficient number of 

weights which will approximate this function. Now why does this come about I will briefly 

talk about that in this video, but the primary purpose of the week is to actually give you a full 

introduction to this structure called MLPs, tell you how forward propagation happens through 

this and also how to solve these for these weights through gradient descent. 

 

Basically, in effect solving an inverse problem. The next week after this one we will look at 

how to use MLP for various problems of our interest. 
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Now all of this utilizes a neuron a basic structure called neuron, which I kind of introduced you 

to in the last week. The idea is very simple when you have any of these coming in you have a 

whole bunch of weights which come in here. So, you could have w1 w2 w3 you sum those up 

and you run them through a non-linearity. This is the fundamental idea behind a neuron.  

 

So, the notations we will use are a is the output of a neuron you can see here a-hat is the output 

of the neuron from the previous layer you could have a's coming in for example a from here 

would be input here and a from here would be input to the next layer. So, anyway we will come 

to this notation once more later on this week, but one thing I would like you to remember is the 

same thing that we did in logistic regression.  

 

You first have a linear combination and then you pass it through a non-linearity. So, this non-

linear function is called an activation function and this function is simply a linear combination 

of the things that are coming in. Remember that for a neuron multiple inputs come in, but only 

one thing leaves out. So, we will discuss this one further as we go through this week. 
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Recall also that we were being using gradient descent throughout and one of the main purposes 

of this week is to do these two things in a little bit more detail. The forward propagation which 

requires you to calculate the output of a neuron and the back calculation which requires you to 

calculate the gradient. Why we require the gradient of course is to update the weight within the 

neural network or any basic model that we have. 

 

Remember we are doing data-based models. So, these database models have various weights 

and they are updated using gradient descent which requires you to find out ∇J with respect to 

the w. 
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Last week we also saw some variants of this gradient descent. The batch gradient descent which 

uses all the data together, mini batch which uses portions of data, in SGD or stochastic gradient 



descent which uses each data individually. Now before we step into this week it is useful to see 

what we learned last week. The reason for this is I will now put several things that we looked 

at in last week in one single framework. 
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So, the important thing to remember is that there are various multiple models within machine 

learning, especially when you look at supervised learning. That is wherever we provide labels. 

All of these work in the same way. Now it is useful to remember why these work in the same 

way. Remember even some input data x and some guess for some unknown parameters w. So, 

w, are the parameters and x of course are the input.  

 

You run it through some model, now some various choices of the model I am going to show 

you. one specific model is the neural network, but we had a linear model, we had a logistic 

model. We had sort of a multi class model etcetera, any of these things can be just thought of 

as some model then after this class you look at other machine learning algorithms, it is useful 

to think of all of them within the simple framework.  

 

So, you run it through a model, once you run through the model you get a prediction. So, this 

prediction now of course you have your data, so you have the actual truth and you have your 

prediction. So, between the two there is a gap. So, these steps have specific names, this step is 

known as the forward step. So, you move forward and actually calculate what your prediction 

is or you can think of this as sometimes called the inference step.  

 



The next step is called the comparison step. So, you made a prediction, there was some truth, 

compare the two, let us call the comparison step and the final step is the optimization step or 

what we call as the back prop step, some people call it the gradient descent step, but let us call 

this the back prop step. Essentially what you require where is I am kind of abusing notation 

because back props specifically apply here in calculating these gradients.  

 

So, this is really speaking back prop, but I am going to sort of talk casually and some people 

do that and say that the weight is updated using back prop basically meaning calculating the 

gradient. So, we have these three steps in every single model that you can think of whether it 

is a simple model or a complex model. Now what we want to do is to look at all the models we 

have looked at so far in this course in the same light. 
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Some of the models which we have used so far without using any hidden layers let us call them 

single layer models. So, a single layer model will function like this there will be an input, there 

will be an output and there will be no intervening hidden calculation going on. So, the simplest 

model we looked at of this form is the linear regression step. what was the model? 

 

The model was here 𝑦̂ =  WTX. So, this x can actually be a matrix as I have shown later, for 

example, your x could have x1 and x2. In that case if you have w is let us say w0, w1, w2 and 

x is let us say x0 which is just 1,  x1 and x2 we have seen this a few times. So, this gives you, 

wTx =  w0*1 + w1x1 + w2x2 

So, that is what is written here in the linear model I have written this as the mathematical 

expression.  



 

So, what is written up here if you are not able to see it clearly is the mathematical or the 

analytical or the algebraic model. So, for example the linear regression model or the linear 

model is simply w0 + w1x1 + w2x2. These x1 and x2 are called features or attributes and I will 

come back with this point later on in this video also. When we represent the same thing 

diagrammatically you have one x1x2 you sum the three together multiplied by w0 w1 w2 and 

you get 𝑦̂ we saw this in last time. 

 

Now when it comes to the data representation as I told you in previous videos it is a good idea 

typically to scale these input data. that is you have x1 and x2 suppose you have temperature 

going from 10 to 150 it is generally a good idea for gradient descent to work to rescale it. so 

that you write it in terms of theta some normalized coordinates so that it scales between 0 and 

1.  

 

I did not emphasize this too much but it is a good idea. In neural networks there is an equivalent 

which is called the batch norm, we are going to ignore that as this course is a fairly elementary 

sort of portion of our entire course. So, I am going to skip this, but just for your knowledge and 

neural networks this is known as the batch norm, the generalization of this is known as the 

batch norm. 

 

The final thing is the cost function. The cost function is J is simply a least square cost function, 

this is what we use typically for linear regression. So, this is called the least square cost, what 

happened when we looked at the logistic function. So, the logistic function is generally used 

for classification and typically binary classification and there we had y-hat equal to some g of 

z where z is again w transpose x same as before. 

 

But we use the sigmoid as a non-linearity. So, we represented it this way to sum these up and 

then run them through this sigmoid and then you get an output, you see that there is still nothing 

in between these two. Nonetheless in this case you have two things going on you have a linear 

function activation and then you have a non-linear activation through the sigmoid function. 

Now what was the data representation y was either 0 or 1. 

 



This either basically it was a scalar and it was binary and the output 𝑦̂ was between 0 and 1 

again, but it was not discrete it was not binary it is a real number and it represented the 

probability. Now cost function if you remember was the BCE or the binary cross entropy loss 

function, 

𝐽 = −𝑦𝑙𝑛𝑦̂ − (1 − 𝑦)𝑙𝑛(1 − 𝑦̂) 

we did this last week. 
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The final example we did was for multi class classification. Notice once again z is w transpose 

x remains the same still the linear activation and what you have at the end of course is a soft 

max. So, I had given you reasons for why we use soft max in order to normalize properly in 

the last one. What does it look like instead of having only one output you could have multiple 

outputs let us say it is a three-class classification problem.  

 

Once again, every neuron in the input is connected to every other neuron is an output and you 

get a 𝑦̂ which is a vector. The representation of y was a one hot vector and 𝑦̂ basically 

representing the probability that it belongs to class 1, class 2, class 3 etcetera. So, you would 

have these three sums up to one and we have the categorical cross entropy cross function here 

which was, 

𝐽 = − ∑ yi 𝑙𝑛yî 

I had also talked about the connection between the two. 

 



Now what is the use of reviewing this? The reason is that we are going to try to integrate all 

these and as well as the lessons that we learned while finding out the gradients for this into this 

one single picture. So, the purpose of this week is to sort of the grand unification of all the 

methods that we have seen so far into one single thing which is a neural network. 
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So, the topics that we are going to cover this video the current video that we have after the short 

introduction, I am going to cover the motivation for deeper networks via XOR. I will briefly 

refer to it in the last video also, but I am going to dig a little bit deeper in this video. Next, we 

will look at the forward pass that is how do you start from the input and go to the output for a 

neural network. 

 

Then we will do the remember the comparison step is trivial, but the back propagation step is 

non-trivial. Typically, this takes a lot of time for students to understand. So, I am split it into 

three different types of networks. One is the kind of networks that we just did which are lots of 

neurons, but input and output are immediately connected. So, this is a shallow network, so that 

is what we will do first. 

 

We will find out how to find gradients for all the w in such a situation. The next one is what I 

call a scalar chain, it is a deep network, but there is no width at all. So, there is only a single 

neuron in every layer and we just go through that deep network and we will try to do back prop 

there and after we are done with that, we will come to this final case which is a normal multi-

layer perceptron of course I will do a sort of simpler example here also. 

 



But by the end of this you should be clearly able to understand how it is that gradients are 

calculated in a general neural network. Finally, I have only talked about sigmoid activation 

function, we will talk about various other activation functions and in the context of back prop 

we will talk about why these various activation functions are required. 
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So, let us start with the first topic for this week, which is the XOR problem. So, remember that 

logistic regression works only for linearly separable data I had talked about this in the last 

week. 
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So, I had sort of made up some classification examples. So, these for example these three are 

elementary gates. This is for example is what is known as the OR gate, I had discussed this the 



last time. The OR gate remember is a simple case where you are only trying to classify four 

points really there is no generalization here which is or you remember 0, 0 gives you 0. 

 

0, 1 gives you 1 if either of these are active that is why it is called the OR gate you get 1. So, I 

have denoted here green as 1 and red as 0. So, this is a simple OR gate example. Now when I 

say OR gate all of us can intuitively draw a classification line. So, this classification line we 

can draw let me draw it in dotted lines so that it is a little bit thick. So, if you look at this line 

let us say this pass is right in the midpoint half zero and zero half. 

 

So, this would then be the line 2x1 + 2x2 = 1. You can simply check this calculation very 

simply if I set x2 to 0 then x1 is half if I set x1 to 0 then x2 is half. So, this is the line which 

passes right in the middle and this is the classification line. Now remember we had also seen 

in the last week that the line which is the classification line is the line their Z equal to 0. 

 

So, this Z equal to 0 line is the classification line. So, here, for example, you can say z =

 2x1 + 2x2-1. 
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Which in this structure here if you remember Z was also equal to w0 + w1x1 + w2x2. So, by 

our interpretation w0 is - 1, w1 and w2 are equal to 2 so that is because the coefficient of x1 is 

2, coefficient of x2 is 2 and the constant term when it comes on the left-hand side is – 1. So, 

there is a one-to-one correspondence between these three. The algebraic expression for z the 

picture here and the classification line.  

 



Now I had talked a little bit about this last week also, but I will say again that when you have 

a straight line it has the equation w0 + w1x1 + w2x2 = 0 and z physically represents the linear 

activation here z physically represents this classification line. Now, if I similarly draw the 

classification line here. So, now I want to separate these three green points from the red point, 

this of course if you can see it is the AND gate.  

 

I think I have drawn it in the wrong color, let me just change the color here. So, these three are 

of is 0, 1, 1, 0, 0, 0 are of and this one thing is on, so this is the AND gate. So, the AND gate 

is going to look like this. Now just by inspection you can sort of write the equation for the AND 

gate you can see that this will be around 3 by 2 and this will be 3 by 2. So, you could have 

something like 3x1 + 3x2 I had also done this algebraically in the last week.  

 

So, minus let us say 2 equals to 0 this would be the equation for the AND gate. So, that when 

x1 equal to 0, x2 equal to 3 by 2 so on and so forth. So, this will be the AND gate so that means 

that you can replicate the AND gate by another network whose weights are – 2, 3 and 3. So, 

just like the OR gate can be replicated by a network with w0 equal to – 1 and w1 and w2 equal 

to 2 AND gate can be replicated with w0 equal to – 2. 

 

And w1 equal to let me write that down instead of just saying it, but this could be w1, this could 

be w0. Finally, this one is an example of a flip gate this is the OR gate sorry this is the NOR 

gate you will see it is exactly the opposite or it is not of OR gate so NOR gate. Now it seems 

to have the same classification line as the OR gate except we are going to write the other way 

around and flip directions.  

 

So, here z is basically -2x1-2x2 + 1. So, the weights are exactly flipped. So, as I had told you 

this one will be one on this side, whenever this distance is positive and it will be 0 here this one 

is exactly the opposite it will be 1 here and 0 there and as I also indicated last week really 

speaking the data points, we are looking at in realistic scenario are more like this. So, you have 

lots of data points here and some other data points here.  

 

So, you will have a lot of red points here, red points here, red points here and green points here. 

Obviously are it being somewhat as if you are just selecting four data points. So, why all this 

exercise? The reason is each OR, NOR and AND can be simulated using logistic regression. 



As I told you this allowing a simulation of elementary gates allows us to simulate more complex 

logic, this was the basic historic idea why people looked at this. 
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So, if we look at the XOR gate. So, the XOR gate is like this if you have both the same whether 

it is 0, 0 or 1 and 1 you are going to get 0. So, this and this are going to be 0. If the two are 

different 0 and 1 gives you 1, 1 and 0 gives you 1. So, for example both are different you are 

getting this. Now the problem is this cannot be linearly separated as I discussed in detail last 

week. You can however separate it using some curve of this sort. 

 

This is a non-linearly separable. So, both are true it is not linearly separable as well as it is 

separable, but non linearly. So, you have to make a nonlinear surface somewhere around it to 

make it separable. So, since that is the case, I will tell you a couple of expressions that will 

achieve this. 
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So, for example, if it were linearly separable then you will be able to get some expression which 

will look like w0 + w1x1 + w2x2 which would be a line which is separated which we know is 

not possible, but now if I looked at another expression x1
2 + x2

2-2x1x2. So, if you look at an 

expression of this sort this of course is (x1-x2)2 you will see x1 - x2 the whole square is 0, 

(x1-x2)2 is 0. 

 

And (x1-x2)2 is 1 here. So, this actually works, but the price you pay here is you have now 

introduced new quantities. We only knew x1 and x2 now you are introduced x1
2 x2

2 and also 

across some x1 x2 in fact not this x1
2 + x2

2 – 2 x1 x2 even x1 + x2, x1 x2 works because when 

x1 is just 0 or 1 then x1
2 and x1 and x1

2 and x2 and x2
2 are the same. So, this one work as well. 

(Refer Slide Time: 25:02) 

 



Now, suppose I want to represent this as a network how would I do it? The way to do it is as 

follows. You take an input we have done this before you take an input x1, you take an input x2 

you also take a third input x1 x2. Now it should seem you will think well why should I need 

this I have already given x1 and x2. The reason is these are only linear combinations. So, this 

is never going to arise unless you add it explicitly.  

 

So, typically what we say is x1 and x2 are attributes that is the original properties we were 

given as inputs, but x1, x2 and x1 x2 are features, features meaning you put these together. So, 

for example, you want to say somebody face is beautiful you might say both the eyes they have 

good features that is because it is not just the original single eye left eye, right eye you are 

looking at you are looking at the combination of the two or combination of all the features put 

together.  

 

So, these combinations that occur, these are the features. So, you can simply do linear 

regression for this data set, but the catch is just like the quadratic and the cubic regressions that 

we did earlier this linear regression works only if you give x1 x2 explicitly, but the key question 

is this, how are you going to know magically that you need x1 x2. So, rather than saying how 

do we get x1 x2 which is just a simple calculation. 

 

How do we get to know that it was x1 x2. Now here the data I took was simple I just took 0, 1, 

1, 0 what if you know it was a numerical data and I needed x1  square x2 or x1  cube x2 or a 

whole lot of other possibilities. So, what happens is, in general, it is not possible to discover 

these or keep on giving a list of all possible combinations systematically in higher dimensions; 

higher dimensions mean here we are just dealing with two variables. 

 

But if I deal with multiple variables which I typically do in machine learning. Now high number 

of variables, high amount of data, this is the general catch behind machine learning. This is 

generally not possible and that is what is known as the curse of dimensionality that is you 

cannot arbitrarily provide these features intelligently or systematically in higher dimensions 

and this is where we have our deep learning algorithms.  

 

So, the idea is what is known as representation learning or in our case let us it feature learning. 

How do I find these features out automatically. So, for that what we need are deeper networks, 



that is we currently had no depth at all, no hidden layer and the catch is if you want to achieve 

things without hidden layers you have to pay the price by adding a large number of arbitrary 

features here. Instead of that if somehow you put a middle layer. 

 

You add a middle layer here and you do some unknown computations or you do some 

computations with unknown meanings then you result in deeper networks. 
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So, I want to show you how that happens in XOR via a deeper network. So, as I told you the 

XOR network can be written in terms of simpler logic gates also. For example, the XOR truth 

table that I showed you which was 0, 0 and 1, 1 give us 0 and 0, 1 and 1, 0 give you 1 it can be 

written as this combination. you had x1 and x2 apply a NOR then for the same x1 and x2 apply 

an AND then put a NOR of the output of this two and that will give you XOR.  

 

So, another way of writing it is let us say NOR of x1 x2 is A1 AND of x1 x2 is A2 then you do 

not of A1, A2 and that will give you XOR. 
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So, just to show you that this is true remember I had written NOR of x1 x2 NOR of sorry AND 

of x1 x2 and NOR of A1 A2 so this is how these quantities were calculated. So, just as an 

example if you have x1 x2if I do NOR or gives me 0. So, NOR is just not of r so that gives me 

1. Similarly, if you do AND I get 0 now I take 1 and 0 and I do a NOR I get y which is 0.  

 

So, you can repeat this exercise and test it out and you indeed get the XOR outputs. So, for 

example, 0, 0 gives you 0; 1, 0 gives you 1; 0, 1 gives you 1 and 1, 1 gives you 0. Notice, how 

it achieved it some of these outputs were sort of spread together you got the same output here 

or you got somewhat flipped outputs here, but the catch here is these two are intermediate 

calculations.  

 

These intermediate calculations made it possible to calculate y without ever notice we never 

invoked x1 square or x2 square or x1 x2. You only invoke the linear features x1 and x2, but you 

did some intermediate calculation and that is how y suddenly magically came into b. 
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Now, we can represent this as a network, how so? So, for example, remember that we had all 

these weights from before. So, for example this was x1, this is x2 and this one is supposed to 

be NOR of x1 x2.. Suppose I say that I first do a NOR just like I did before. So, all we do is use 

the weights that we already knew, the NOR weights were given here right up here. So, the NOR 

weights were w0 is 1; w1 is - 2 and w2 is -2.  

 

So, you can just write those weights here w0 is 1, w1 is - 2 and w2 is - 2. Now it turns out that 

well let me do this in a short while. So, similarly the second one is AND the AND gate if you 

remember was 3, 3, - 2 so this one would be - 2 this one is 3 and this one is 3. So, what comes 

out as output here is what we call a1 this one is a2 and this one is as usual the biasing. Now 

this gate is again the NOR gate. So, it has the same weights as before.  

 

So, the same weights as before happen to be 1, - 2, - 2. So, you combine this network together 

with the hidden outputs being a1 and a2. In this case we can interpret it and the final output 

then is going to be y-hat is XOR of x1 x2. Now I want to point out that all these you know to 

assume this of course we assume that there was sigmoid here, sigmoid here, sigmoid here as it 

turns out this will not be exactly XOR because there is a sigmoid which will give you an input 

between 0 and 1 at the end you have to do some thresholding this I showed here.  

 

Typically, when we say that the output is an OR output, we want 0 or 1, obviously the output 

is not going to be that. It is going to be greater than 0.5 or less than 0. 5. Let us say the output 

comes as 0.6 then if you want the output you have to put a step function here. So you have to 



put some step function here and this is the thresholder output which says that greater than 0.5 

goes to 1 and less than 0.5 goes to 0.  

 

However, when we take the gradients, they are taken from the non-threshold output, the direct 

output of y-hat because after thresholding you cannot really differentiate. You can only 

differentiate the sigmoid, so you calculate the sigmoid, you will get a J using our binary cross 

entropy and then you do a back prop or you do a gradient from there and connect w0 w1 and 

w2.  

 

So, similarly when you actually run this in practice you have to be careful about whether you 

have, you know, you will not actually achieve this, this is sort of a toy example, but the primary 

purpose is to motivate that a deep network actually arises naturally if you only want to use 

these linear terms provided you are willing to expand these intermediate calculations. 
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So, what happens here through this entire process is this allows us to create approximations 

systematically. Remember our entire purpose of using a network is to create an approximate 

model connecting the input to the output. So, this is our entire purpose. Now if I have 4 inputs, 

I want to create x1 square, x2 square, x3 square, x4 square, x5 square, x1, x2, x3, x4 etcetera 

that just becomes humongous expensive as well. 

 

As we really do not know which are terms to take, should I take, you should I take power 4 

how many terms should I take that is why it is easy like when we feel that the approximation 

is not good enough, we simply add more layers or we add more neurons. I will come to 



somewhat of the subtle distinction between these two in the next couple of videos, but 

nonetheless we will basically achieve our purposes rather than touching the input which we 

keep as it is, we start adding stuff in the middle and as it turns out that is good enough. 
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In fact, we have the universal approximation theorem which says that if you just give me one 

layer, just give me one intermediate calculation layer as mentioned here. Even with one single 

hidden layer, you can approximate any function to any given amount of accuracy, provided 

you give me sufficient number of neurons. So, that is it for this video. In the next video we will 

start seeing how to actually move here through this network from beginning to end. Thank you 

I will see you in the next video. 


