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Welcome back. This is week 9 of inverse methods in heat transfer. In the last couple of videos, we 

saw binary classification which meant that if you have some category, which needs to be split into 

two, let us say cancer versus no cancer that would be the case of a binary classification problem. 

Now we are going to extend that here into a multi-class classification case. So, here you have more 

than two categories that you can split the data into.  

 

So, let us say the number of categories is K so then K is greater than 2. For example, you have an 

image and this image is of something if there were only two categories typically you will use a 

binary classification approach. But here if it is let us say a cat or a dog or a horse, then the number 

of categories is three. Similarly, you could have something like laminar, turbulent versus unknown. 

So, that could be a possible three-class classification problem.  

 

Or you could have many more cases for example laminar turbulent versus transition. So, this would 

be the example of k equal to 3 classes. In an image you would see something of the sort in case it 



is a binary classification problem, in case we are putting all the data at one place. They put cluster 

in a certain fashion we should make it appear that you have three classes where you want 

boundaries.  

 

Now in all the problems that we have done so far, I have made a certain implicit assumption and I 

will deal with this a little bit later. But you would have classes of this sort and you can see that you 

can now draw boundaries that separate let us say the k equal to 1 from the k equal to 2 and the k 

equal to 3 cases. Now how do we do this? Here we do not have just a single decision boundary but 

effectively you have two decision boundaries or in some cases you can even visualize this as if it 

has three decision boundaries. So, how do we find that out? 
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So, once again we go back to our old idea about machine learning essentially being a combination 

of these four ideas. Data representation and data set, what the forward model is, what the loss 

function is and what the optimization algorithm does. So, what is it for the multi-class classification 

problem. So, in case you have a multi-class problem it turns out that in data set just like last time 

we did a scalar representation y equal to 0 or one there is something called one hot vector 

representation that we have to use.  

 

The forward model will be very similar we will have a linear but we will not have sigma at the end 

we will have something called a soft max at the end. The loss function is what is known as a 



categorical cross entropy loss function and the optimization algorithm says as gradient descent. 

Just as before if we have lots of data you can use stochastic gradient descent or mini batch gradient 

descent otherwise, we are still happy with just batch gradient descent. 

 

So, let us look at these three alone within this video and the rest of the details actually exactly 

happen to be exactly the same as before. So, first let us start with data representation. 
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So, the representation has the following problem. So, let us take this simple example you have an 

image again I have let us say I have a 60 cross 60 image which means there are effectively 3600 

inputs which go here. So, if I write 1 and I unroll it I will have to write till X 3600 here. I put all 

that together and how do I get that? I simply get it as I have said multiple times before. I can unroll 

this and just write it out in one single column vector.  

 

There are other ways of doing it, but we are not discussing that in this case. So, X representation 

is straightforward again it is as usual. Now comes the representation of Y. Let us say this image 

which is an image of something, it is already given to you. It is the image of a cat or a dog or a 

horse and you just need to figure out what it is. Now you have three classes Y is either a cat or it 

is a dog or it is a horse.  

 



Now how do you represent it? Now suppose one option is I say cat is one, dog is two and horse is 

three. This is problematic because remember when we had just 0 or 1, we could simply make up a 

function that went from 0 to 1. But it is very hard to do this between 1 and 3. So, we will need to 

think of something else. You might think of other possibilities such as - 1, 01 and even these do 

not work well because you have to map the space between this and the space between this. 

 

And we like the fact that we had a 0 to 1 and there was an interpretation as probability in the binary 

case. So, people came up with a clever solution. Now instead of this being a scalar that is notice 

here y is just one single number. This is also a scalar; we start representing y as a vector. So, y is 

represented as a vector as follows, y has three components I am going to write it as a row just 

because it is a little bit more spatial and efficient so [y1 y2 y3]. 

 

So, this is what it represents. This will say whether it is a cat or not, this will say whether it is a 

dog or not and this will say that it is a horse or not. Typically for an actual image if it is a cat then 

y will look like, ycat  =  [1 0 0] with a dog sorry if it is our dog y will look like, ydog  =

 [0 1 0] and if it is a horse will look like, yhorse  =  [0 0 1]. 
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This representation notice is a vector representation and it is called a one hot representation. 

Whatever we did for logistic regression was a binary representation this one is a one hot 

representation. Why is it one hot? Only one of these is active at any point. So, you can imagine a 



switchboard with just three bulbs and one of them will light up. If the first one light up lights up 

and say cat, the second one lights up, I say dog and if the third one lights up, I say horse.  

 

And only one of them will be lit up at any instant of time. So, this is a simple one-hot representation. 

but our problem does not end here. We have a problem of finding out but what about 𝑦̂. Remember 

𝑦̂ could be any number between 0 and 1, when we dealt with binary classification. So, here we can 

now think of a 𝑦̂. Let us take an example 𝑦̂. Let us say we put the constraint that all three numbers 

all y-hat i have to lie between 0 and 1.  

 

So, if we do that let us take an example, I will say 𝑦̂ this one is 0.1, this is 0.3 and this one is 0.6 

can be interpret this actually turns out there is a very natural interpretation. This says probability 

that this x is a cat is 0.1. Another way of saying it is probability that y1 equal to 1 is 0.1. Remember 

y1 is just the first component. This one is probability that this is a dog is 0.3 and probability that 

this is a horse is 0.6.  

 

Since the greatest probability occurs for a horse, we would maybe most probably will classify this 

as a horse but we will say it is a horse with 60 percent probability. So, this is a very simple 

representation. Now notice again I am emphasizing this was represented as a vector. Even though 

there is one quantity it was represented as a vector of size 3 and what happens with words. 

(Refer Slide Time: 09:41) 

 



Let us say we want to find out text and we have email and something like I will give you money 

is some text that is sitting in an email and I want this as a vector. Now the way we do it is each 

word finds its dictionary place but the entire dictionary is a one hot vector. So, you give a 

vocabulary or a vector of size. Let us say there are 100000 words in a dictionary for example so 

10 power 5 that many circles we have here.  

 

And let us say I is the 58000 word then that alone will be one and the rest of the all the entries 

within this vector will be zero. So, each word is then represented as a vector of the same size of a 

hundred thousand size but it will be a one hot vector. So, this will be a sequence of one hot vectors 

and only one of them will be one. So, this is a very complicated way of doing things but nonetheless 

it is complicated at least for dictionary words or sentences.  

 

But for images it is fairly straightforward. You just have as many entries as you have classes. So, 

the size of y-hat is exactly equal to the number of classes so you have y1, y2, y3 up in yk or y1̂, 

y2̂, up to yk̂. So, that is it for the representation this is simply a one hot representation. 
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The next question was that of the forward model. So, let us make the forward model again in this 

case of having three entries. So, for the sake of argument let us say I have an input with four 

neurons and I have three neurons at the output. From here I want to take at y1̂ from, here I want to 



take out y2̂ from here y3̂ that is the probability that this is a cat, probability that this is a horse, 

probability that this is a dog and this is a horse.  

 

Now how do I make my weights and models in this case. So, the way we do it is this, of course, I 

will connect this, this is what is known as fully connected. So, we will put some weights here we 

will say w1, w2, w3, w4 then in this neuron there will be first a summation which basically means 

w1x1 + w2x2 so let us say this is x1, x2 etcetera up till +w3x3 + w4x4. But after that you also 

want a non-linearity. So, this of course is Z is this linear combination.  

 

So, z =  ∑ wixi but then the output which I am calling 𝑦̂ or we typically call a1 it is the first 

activation is some non-linearity of z. So, g(z1), z1 is the linear output here. Now what about the 

second case? In the second case I join these. Now here is a problem if I call this w1, w2, w3, w4 I 

will have confusion between which w1, w2, w3, w4 it is so I will call this w11,  w21, w31, w41. 

 

I am going to change the rotation within the next week but this is just to make clear that there are 

four weights these four weights for the first neural. Similarly, another set of four weights for the 

second neural. Now what can we call them? Instead of calling them w11 we call them w12,  w22, 

w32, w42. Similarly, we have the third neural. Now you can see that it gets fairly messy but 

nonetheless this is really how real neural networks look pictorially. So, this is w13,  w23, w33, w43. 
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So, suppose I want y3̂ this quantity here y3̂ we would say is a non-linear function applied on the 

linear activation which was z3. Whereas z3 itself which comes here is from a linear combination 

of these four. So, z3  =  w13x1 + w23x2 + w33x3 + w43x4 so that is it. It is a simple model it is 

of the binary classification or the logistic regression model. All we did really is just add more 

neurons at the output and just go with that.  

 

However, we still have to figure out what is z or sorry what is this g. Now we might think we can 

use sigmoid can we use sigmoid. If we use sigmoid the positive thing is y1̂ would lie between 0 1, 

y2̂ would also lie between 0, 1 so would y3̂. But there is a problem. The problem is y1̂  +  y2̂  +  y3̂ 

should always be one. Why do we want it to be one? Because we want to interpret it as a 

probability.  

 

Notice this here if the probability that the cat is 0.1 and the probability that a dog is it is 0.3, the 

probability that it is a horse should be 0.6 because the sum of these three should add up to one 

because these are the only three possibilities that exist. On the other hand, if it is just sigmoid this 

could be 0.5, this could be 0.5, this could be 0.5 and we would no longer be able to interpret it the 

way we want. 
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So, we create a new function called soft max. So, soft max works like this so suppose I want y1̂ I 

will say it is, 



y1̂  =  
ez1

ez1 + ez2 + ez3
 

 y2̂ is, 

y2̂  =  
ez2

ez1 + ez2 + ez3
 

and y3̂ is, 

y3̂  =  
ez3

ez1 + ez2 + ez3
 

And then obviously if I sum the 3, I simply get one. This is the advantage of creating this soft max 

function.  

 

It has one other nice advantage which I will talk about the next week. But the advantage of the soft 

max function is that we are always ensure that we can interpret the output as if it is a probability. 

So, what we have looked at up until now is that the data is represented as a one hot vector and the 

forward model is exactly the same as the logistic regression model except, we use soft max instead 

of sigmoid.  

 

Now I must point out here and I will do so once more when we come to the next week that this 

soft max only needs to be used at the end, when you want to find out just the output. If suppose 

there is a calculation in the middle you can actually use sigmoid there but anyway these are greater 

details when we come to neural networks and I will discuss that in the next week. 
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The third part is the question of the loss function. Now what is the loss function here? Now I will 

write the loss function but it should also satisfy the same property that we wanted for our binary 

cross entropy loss function. So, I am going to call this JCCE standing for categorical cross entropy 

loss function. And the purpose of this loss function is exactly the same as the previous one and 

strangely enough it will look simpler than a binary cross entropy loss function. 

 

It is like this it is − ∑ yi
k
i=1 𝑙𝑛 yî. This looks really simply, all it is let us say I have some examples 

like again I will say 0, 0.1 actually let me make this a little bit better. Let us say, 

𝑦̂ = [0.2 0.3 0.5] 

y =  [1 0 0] 

Let us say we actually have a misclassification. So, we have misclassification in that the one which 

seems to be most probable due to our model is 0.5 but the actual truth is that it is a cat then we 

would calculate this in the following way.  

 

This will be −y1𝑙𝑛y1̂ − y2𝑙𝑛y2̂ − y3𝑙𝑛y3̂. Now notice y1 is 1 so this one will be -1 * ln(0.2)-0-0. 

So, this is simply -ln(0.2) so that is the loss function in this case. 
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Now I am going to argue that even though it looks less complicated it is almost exactly the same 

as the binary cross entropy. So, we can compare this with the binary cross entropy case. Now 

remember in the binary cross entropy case we had just two classes y was either 0 or 1. Now this 

was the scalar representation. Now instead if we represent this also as a one hot vector now instead 

of calling it class 0, I would have called it 1, 0 because there are two classes and it is the first class.  

 

And instead of calling it one I would have called it 0, 1. So, let us say this is y1 the first component 

of y, this is y2. So, in the case of class 0 or in the first class I would say y1 is 1 and y2 is 0 the 

second case y1 is 0 and y2 is 1. Similarly, if I look at 𝑦̂, 𝑦̂ would look something like 0.2 and 0.8 

so this one would be y1̂ and y2̂. Putting this together if I actually calculate the cross entropy loss 

function here this would be −y1𝑙𝑛y1̂ − y2𝑙𝑛y2̂.  

 

Now we know that y1 = 1 − y2 because there are only two classes. So, if y1 is 1 then y2 has to be 

0, if y1 is 0 then y2 has to be 1. Similarly, we also know that y1̂ = 1 − y2̂.   
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So, substituting this, this will give us −(1 − y2)𝑙𝑛(1 − y2̂) − y2𝑙𝑛y2̂ which is exactly the same as 

J binary cross entropy. So, you see the terms 𝑦𝑙𝑛𝑦̂ and (1 − 𝑦)𝑙𝑛(1 − 𝑦̂). So, what this shows is 

that what I have is the categorical cross entropy loss function is exactly the same as the binary 

cross entropy loss function except it has been extended to higher number of classes.  

 

What do we do finally about the final portion of the puzzle which is the optimization algorithm, 

we simply use again we use gradient descent. Now it might seem like all this is fine but how do 

we do an actual practical case. So, we will come to that next week but all I wish to point out is it 

is actually fairly straightforward. We do not do anything different. So, if I go back to this image 

here, so let us say this has about 30 points here. 

 

I just collect these 30 points I find the x location, the y location or x1 and x2, x1x2 class represented 

as a binary as a one hot vector. So, this is the way you will write it. So, let us say the first point is 

0.3, 0.4 and this belongs to class 1 so this will be 1 0 0. The second point is let us say 0.1, 0.7 and 

this belongs to let us say 0 1 0. So, you will note this down and you have a model your model is 

like this. 

 

It is a more complicated model but you simply can write down y1̂ in terms of all this, y2̂ in terms 

of all this and y3̂ in terms of all this that is your forward model. Then to do back propagation you 

have to do w = w-𝛼
𝜕𝐽

𝜕w
 . Now how do I calculate del J del w this, I will talk about next week I will 



just give you the expression directly in the next week. But keep on iterating and finally you will 

get the weights.  

 

So, that magically you will actually get a nice classification boundary. So, we will look at a couple 

of toy problems in the next week for both the logistic regression as well as well most probably not 

multi-class regression. But for logistic regression definitely we look at an example in the next week 

and we will move on to neural networks. But before we want move on to neural networks that 

would be a question. why exactly do, we even need neural networks and that I will answer in the 

next video. Thank you. 

 


