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Welcome back, this is week 7 of inverse methods in heat transfer and what I wish to cover 

within this video is this algorithm called the Metropolis Hastings Markov Chain Monte Carlo 

algorithm. It is a long name; it is also called MHMCMC Metropolis Hastings Markov chain 

Monte Carlo. Now each of these parts does something in the kind of problems that we are 

solving. Now what I want to do here before jumping into the algorithm is to discuss the 

motivation for why we are doing this.  

 

Now some of it was implicit in what I discussed so far. Now remember what we are doing we 

are trying to solve for some parameters. we are finding some parameters some w. Now this w 

as we have seen earlier could consist of a large number of parameters, let us say n parameters. 

Now typically here we have just two parameters or in the problems that we were solving this 

week at least we had only one parameter.  

 

Now the question always is this we want the PDF or the joint PDF of this 𝑤1 through 𝑤𝑛 these 

n parameters that is what range does 𝑤1 vary in what range does 𝑤2 vary. So, on and. So, forth 

till 𝑤𝑛. Now in order to do that let us say we have just one parameter like we were doing before 



in the previous video suppose only one parameter q then what we want basically is the 

probability distribution function of q. It could look like something like this even though we 

were looking like looking at Gaussians.  

 

Now imagine we have some such distribution but we can sample our constraint is that we can 

sample only at finite points. Why is that? Because remember for each value of q we actually 

had to calculate what the model value of T was and then find out (𝑇̂ − 𝑇)2etc and that is really 

the only way in which we could generate this value of the PDF of q at one point. So, just each 

sample is expensive, it is not cheap to sample at each point.  

 

Now this is for a simple slab imagine if it is like a full 3D simulation where you have to 

calculate at each point and you have lots of thermocouples then each sample becomes really 

expensive. So, the first point is we can sample only at finite points, the second point is that 

when we calculate something like 𝐸(𝑞). 𝐸(𝑞) is ∫ 𝑞 at a particular point multiplied by let us 

say the PDF of 𝑞 𝑖𝑠 𝑝. 

 

Even this integral can only be approximated. how are we approximating it? we are 

approximating it using ∑ 𝑞𝑖 𝑃(𝑞𝑖). So, what we do effectively is we take a few points, let us 

say we call this 𝑞𝑖 and we sum just at this point. And we take a small interval around this that 

is basically what we are doing this works out because the integral of 𝑞𝑖 turns out to be one and 

that is why this integral basically equates to the summation because of normalization. 

 

Only for variance you had to do ∑(𝑞 − 𝑞̅) or 𝐸(𝑞)𝑝(𝑞)𝑑𝑞 and this was also approximated by 

∑(𝑞𝑖 − 𝑞𝑖̅)
2𝑃(𝑞𝑖). Now what is the problem? So, there are two problems one is first we are 

sampling only at finite points and even the quantities of interests that is what is the mean value 

of the parameter, what is the variance of that parameter or also approximated.  

 

So, these are key problems that we are dealing with. Now because of this where we sample and 

how we sample becomes extremely important. 
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Now in this Metropolis Hastings Markov chain Monte Carlo there are three parts, the first part 

you actually the causation is like this, first part is Monte Carlo, from there we go to Markov 

chain and from there we go to Metropolis Hastings. Now what is the basic essence of Monte 

Carlo the basic essence of Monte Carlo is instead of doing continuous sampling or sampling 

the entire sample space you just use some sample points.  

 

So, this is a subset of sample points from the sample space, if you take this that is basically the 

idea of harmonic order. Remember we add our entire sample space whether it is continuous or 

even if it is discrete in fact the initial way in which Monte Carlo was done was for a discrete 

random variable but nonetheless even if it is a large sample space out of that we sample from 

a few places.  

 

Now when we do offline sampling, these are fixed and these are independent samples. All 

samples are independent if you do offline sampling or offline Bayesian but how do we know 

that we are sampling at the right place. for example, let us deal with if this is was this was 

something like our actual PDF and this is our sample space. let us say this is a full sample space 

let us say minus one to one that is not accurate but let us say that is the full sample space.  

 

Now only some portion of it actually contributes to the integral, but somehow let us say when 

you were sampling you only sample it at these places. you will actually end up getting 

something like 𝑞̅ or 𝑤0̅̅̅̅  equal to zero because you really have nothing going on there or very 

little go will go on. So, if you do not sample from this portion which is the important portion, 

you will actually under sample or you will very poorly sample.  



 

Now when we do pure Monte Carlo or we do pure offline we are basically assuming that I will 

just put a lot of points here and somehow it will magically capture it. Now come if you come 

to something like this, it is possible that you might have put samples of this sort and you will 

get practically nothing of this PDF. if you just sample here you get practically nothing which 

is when we come to this idea of both Markov chain as well as Metropolis Hastings.  

 

So, the idea is this, the idea is in Markov chain, well the general idea of a Markov chain is any 

sample let us say 𝑤𝑡+1 is just dependent on 𝑤𝑡. Another way to say it is the new sample depends 

only on the previous sample, on just the previous sample. Now imagine instead of doing a grid 

search like, this you start doing a different grid search. The grid search works like this you first 

give one point. 

 

You look at the probability here and you are not very happy, looks like I am in a low probability 

space. I will randomly move somewhere else and then you look around and somehow you have 

a good guess for where to go next. So, this is somewhat like a random walk, I will shall tell 

you how to do this better. Now what you do is? you do a lot of these random walks earlier 

versions of Marco chain Monte Carlo were that you start from various places randomly sample 

the domain at various places, but the new sample depends on just the previous sample.  

 

So, you search a little bit more regularly than what I am saying or in a more organized fashion 

than what I am saying but nonetheless it is not a simple grid search. So, this is a unique type of 

sampling just Marco chain, Marco chain has multiple types of sampling. So, Marco Chain 

simply says that new sample is not independent of old sample. Now within Marco chain there 

are multiple types of samples, one such type of sampling is called Gibbs sampling, another is 

called Metropolis Hastings which is what we will do.  

 

Now this Metropolis Hastings sample has been named as one of the most important algorithms. 

So, 10 most important algorithms of the 20th century, another one is the fast Fourier 

transforming. This is very important in multiple fields in economics, it is important in 

biomedicine, it is important of course an inverse heat transfer it is important. So, a large number 

of places where we have to estimate, so, this is true in general of Monte Carlo. 

 



We have to estimate integrals from finite samples and we do not know you know what is the 

density of that integral, where is it high, where is it low, when we do not know such information 

but you still want to evaluate integrals of the sort that we have in expectation or in variance or 

in the denominator in such cases Monte Carlo method and specifically not Monte Carlo but the 

Markov Chain Monte Carlo method becomes important Metropolis Hastings is a certain type 

of sampling here. 
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So, now before I am going to describe the algorithm here but let me give you an intuition. So, 

for how this happens. So, let us again go back to the simple probability case, we were looking 

at which was we were sampling from q. So, let us say the PDF of q looked somewhat like this. 

So, this is PDF of q and the way we sampled it is, we start at some random Point within the q 

domain. So, let us say this random point was here.  

 

So, we start with this random point and you do your sampling basically, you find out T 

simulation etcetera and find out what its value is and indeed you find out PDF at this point. So, 

let us call this PDF one. Now you have a choice on where to take the next point. So, this is a 

Markov chain. The Marco chain will say that at this point I will look somewhere in this 

neighbourhood and I will look somewhere in the neighbourhood and a lot of points in this 

neighbourhood that is somewhere here, this is I am going to search in this proposal region. 

 

That is, I will not randomly jump from here to let us say somewhere here like I started here I 

don't want to jump somewhere very far off, but I will say I will search once again with a certain 

probability. So, let us say I search with the probability which is a Gaussian. So, this is called 



the proposal distribution. So, what is the idea you choose an initial point the next point that you 

choose is chosen with a certain probability in the neighbourhood of the current point.  

 

So, this can be any distribution but we will use as usual we'll use a Gaussian, but the Metropolis 

Hastings algorithm works regardless of what distribution you put here with of course a certain 

constraints on what type of probability, that you are going to use, you could use a uniform 

distribution, that is all points in this neighbourhood are equally likely or you can say that I will 

put most probable choice of next point is right here and you can choose a little bit to the left 

and a little bit to the right etcetera. 

 

But the idea is the next point. So, the next point q new is some probability centered on q old 

with let us say since I am assuming it is a normal probability with some Sigma. So, Sigma let 

us call it Sigma s for Sigma for searching. So, let us say this new Point turned out to be here. 

𝑞𝑛𝑒𝑤~ℵ(𝑞𝑜𝑙𝑑, 𝜎𝑠) 

 This is my new point; it does not mean I always have to sit within the Gaussian occasionally I 

can come really far with the Gaussian means Gaussian of course has infinite width to the left 

and right.  

 

So, now once again you calculate what the probability is? now once you calculate the 

probability you notice that again this point has higher probability than my previous point. So, 

that is 𝑝𝑑𝑓(𝑞𝑛𝑒𝑤) > 𝑝𝑑𝑓(𝑞𝑜𝑙𝑑). When you see this, you have a choice on whether to accept q 

new amongst the sample set or not. what are we doing when we do this. So, ultimately what 

we are doing is remember when we are putting sample points let me come here. 

 

Our original choice when we were using offline Bayesian was a set of random points or not a 

random point an organized set of points like this, in offline Bayesian. This is what decides our 

new sample. Now instead of using this queue sample you are proposing a new q sample where 

you started somewhere, the next point is a proposed point. Now you choose to keep this point 

or not if you chose to erase this point, you will choose for a better point.  

 

Now what is our aim while doing this we want to somehow random. So, that most of the 

proposal points are here because that is where most of the integral is coming from. So, ideally 

our proposal points should look like this. So, let us say I mark it in pink, lot of points here and 

a few points here. So, what we want is our proposed points or not our purpose points, finally 



our sample points should be such that a lot of points are in the high PDF region and very few 

points are in the low PDF region.  

 

So, similarly when we come here and we propose new points, we want to decide new points 

based on whether they are better compared to the whole point or not. Now what is better if my 

probability is high obviously this is a better Point than the previous one. So, I will say, that if 

PDF is of q new is greater than PDF of q old, we will accept it. Now what happens if you gave 

a proposal point, let us say your old proposal point was or your old point was this or you 

accepted this and you again made a region.  

 

So, let us say I kept a region here and started searching and the next proposed point was here. 

Now this proposal let us call this 𝑞3. So, this is 𝑞2, 𝑞1. 𝑞2 was greater than 𝑞1. So, I accepted 

it. Now I came to 𝑞3. Now remember this is Markov chain I am not going to look 𝑞3 with 

respect to 𝑞1, I can't look at 𝑞1, I can only look at 𝑞2. Now 𝑞3 I will check with respect to 𝑞2. 

Now 𝑞3 is worse than 𝑞2 and I do not remember what 𝑞1 was because it is Markov chain, I 

have forgotten it. Now 𝑞3 less than 𝑞2 should I take it or not. 

 

This is the basic question. Now what Metropolis history says is accept with some probability. 

So, if it is greater always accept if it is lesser accept sometimes and reject sometimes. Now the 

cleverness of metropolis Hastings is the ratio with which it accepts A is called the acceptance 

ratio this acceptance ratio happens, when probability of the new point is lesser than the 

probability of the old point you will accept it with some ratio and reject it with some ratio.  

 

So, let us now look at what the algorithm is? the entire algorithm is simple and it will become 

even clearer when I actually show you a simulation of exactly the same slab case with a 

metropolis Hastings Marco chain Monte Carlo algorithm. So, let us go through the algorithm 

now. So, the idea is like this you first initialize and make some initial guess like I said you 

randomly choose a certain point within the domain where you choose to initialize. 
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So, I will erase this here and draw this once more. So, that the process becomes a little bit clear 

on how we are doing this. So, let us say I have a probability distribution like this and this is my 

q, where I am searching, I am again showing for a single parameter, of course, this works for 

multiple parameters also. So, suppose I initially guessed somewhere here this is my 𝑞1. Now 

once I choose 𝑞1, I Now have to decide on 𝑞2. So, first I find 𝑞1 at 𝑞1 I find out 𝑃1.  

 

Now for 𝑞2 I propose a distribution here. Now this proposed distribution comes at this step, it 

is centered it is a normal distribution, it is centered around the previous distribution. So, 𝑞2 is 

a random number in this range, it is highly probable that it will choose 𝑞1 itself, of course that 

will never happen in practice computational. But the closer it is to 𝑞1 the more likely it is to get 

selected and the farther away, it is from 𝑞1 the less likely it is to get selected.  

 

So, you go here and let us say at some point you select few this 𝑞2 gives you a certain 

probability 𝑃2. Now that is what is written here but not so, clearly, all it says is you generate a 

random number U, this is a uniform random variable between 0 and 1. Now why do we do that 

because we are trying for this very simple idea that if 𝑃2 greater than 𝑃1 accept, if 𝑃2 less than 

𝑃1 accept with probability A.  

 

Now how do we do this let us say this probability A turns out to be 0.5. So, let us say we went 

to these two points and it actually turned out that 𝑃2 was some point here let us say. So, farther 

off and 𝑃2 is less than 𝑃1 for let us say this is 𝑃3 and 𝑃3 is less than 𝑃2 that is where we came 

and we want to accept it with probability 0.5. Why 0.5, I am making something up how would 



we achieve that in computational practice what you do is this you select a number between 0 

and 1 this step.  

 

Now it is a uniform probability, which means you could have selected any number between 0 

and 1 with equal probability and A here is 0.5. So, if the number that you randomly selected 

turned out to be less than 0.5, you will reject it, if it turned out to be greater than 0.5 you will 

accept it. what does this mean? in 50 percent of the chain cases you will reject it and 50 of the 

cases you will accept it because you have put A exactly at the place where you want the 

probability.  

 

So, if you want to accept with probability A all that means is you put a line, you choose a 

random number in the range 0 to 1 and let us say a was 0.25, you say well if it is less than 0.25, 

I will accept it, if it is greater than 0.25, I will reject it, what that will do is it will collect it will 

select it only in 25 percent of the case. So, that is the basic trick that we are applying here we 

use a random number uh uniform random number in order to sample from case which will give 

us exactly an acceptance ratio of A.  

 

Now what is this A? What is this magical number A again that is what I will show next. 
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A happens to be now notice, 

𝐴 = min (1,
𝑃𝑛𝑒𝑤

𝑃𝑜𝑙𝑑
) 



what does this mean? let us first take two cases. So, 𝐴 = min (1,
𝑃𝑛𝑒𝑤

𝑃𝑜𝑙𝑑
)  , 𝑃𝑛𝑒𝑤 represents the 

new probability and 𝑃𝑜𝑙𝑑 represents the old probability. Let us say 𝑃𝑛𝑒𝑤  >  𝑃𝑜𝑙𝑑   and this would 

mean that 
𝑃𝑛𝑒𝑤

𝑃𝑜𝑙𝑑
= 𝑟 > 1 . So,  

𝐴 = min(1, 𝑟) ; 𝑟 > 1 

𝐴 = 1 

 

Which means that A equal to 1 means always accept because we accept it with probability 1. 

For example, if I come here, I will generate a uniform random number. this uniform random 

number will be between 0 and 1 and what is A, A is one. So, this number will be always even 

at the worst-case scenario will be 0.999, this will be always less than 1. So, you will always 

accept this new point this basically means that new points with  𝑃𝑛𝑒𝑤  >  𝑃𝑜𝑙𝑑 are always 

accept. 

 

But let us say 𝑃𝑛𝑒𝑤  <  𝑃𝑜𝑙𝑑. So, let us say 𝑃𝑛𝑒𝑤  <  𝑃𝑜𝑙𝑑 and the value is 
𝑃𝑛𝑒𝑤

𝑃𝑜𝑙𝑑
 is let us say 0.5 

this would mean A is 0.5 which means accept 50 percent of the times. So, if I draw this 

probability distribution, let us say P new turned out to be somewhere here really lower 

compared to P2, let us say it is 10 times lower than P2 then it will be accepted only 10 percent 

of the times if it is a million times smaller than P2. 

 

Then 1 million chances that you will accept this really bad point by why do you want to accept 

the bad points because it is unclear what this looks like. 
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It is possible that our distribution function could look really weird like and suddenly it may 

jump up. So, even though this value is really low in comparison to this nearby another region 

is there which is important. So, in order to account for that we actually start accepting points 

which are not necessarily good points immediately but they might still turn out to be decent 

points. Now what is P new and P old this we have already seen before. 

 

P new is just the probability of the new points remember for our slab example or any linear 

regression example it is simply summation of the error square and similarly P old is summation 

of the old error square. So, we basically calculate the PDF of this new point and old point and 

accept new points always if they are better than just the previous point. But reject new points 

in case they are or accept them with a certain probability in case they are a little bit worse. 

 

So that is what is written here in pseudo code this is if A is greater than that random number 

you take it otherwise you reject it. So, I will come to this the code for this but let me just show 

you what would happen in case we did it in 2D, in the same idea if we did this in 2D what it 

would look like. So, what we expect it to look like is this we start at some random point, we 

start here let us say and it starts proposing. 
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Let us say one point I put a few points here but let us say proposes a point here you see if 

somehow magically this probability was increasing this will accept it. It proposes another point 

maybe it is slower you reject it, but it proposes a point here and this is accepted. So, this one is 

now erased. Now this point is accepted. So, let us put red wherever we accept the point. So, 

this one is accepted, this one is accepted, this one is accepted, let us say this one is accepted 

this one is accepted. 

 

And once you come here you see this is a high probability region and you will be unlikely to 

go out you will start accepting points here and you will start getting a lot of points here and it 

is unlikely that you will step up. 
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Now typically what happens is we have something called a burn in Period. the burn -in period 

is that the first B let us call this build the first B samples are not used for integration. So, if you 

are summing up let us say q e to the power minus s by 2 Sigma square instead of doing it from 

1 to the total number of samples you will actually do it from B or B plus 1 to the total number 

of samples. Because the first B samples will typically be in this bad region there are other 

reasons also, I am just giving you a casual reason.  

 

So, they might be actually in a bad region and your real samples are somewhere here. So, what 

is this B this is as we saw in general machine learning also this is what is a hyper parameter 

you have to select what this B is. But the idea is very simple you cycle over a few points NS 

points reject the first be and or throw away burn the first B select the rest for integration. Now 

when I say cycle, within the cycle of course there is accept it. it is after this entire cycle is over 

the Metropolis Hasting cycle is when you start doing the burning.  

 

Now this Metropolis Hastings lies in the way we declare what A is and how we generated The 

Proposal region. Now if you have different ways of generating. Now in general not only normal 

you can have other distributions it is still called metropolysis in such a case but how we use the 

acceptance ratio Etc decides because the other one is like I told you Gibbs sampling. Now a 

major advantage of Metropolis Hastings is it is what is called sample efficient. 

 

As a number of parameters increases, for example, pure Monte Carlo with basically offline 

might be good for the type of examples that we did for low parameters. So, when you have to 

partition essentially a one-dimensional domain and you are just selecting here Markov simple 

Monte Carlo might be efficient but once you come to 2D it becomes less efficient when you 

come to 3D it becomes even lower efficient.  

 

So, its efficiency starts dropping whereas Metropolis Hastings starts working better and better. 

Especially in finance Industries or in fact even in engineering problems if you have a few 

thousand parameters, then really pure Monte Carlo will not work well at all. you will have to 

use something like Metropolis Hastings in order to do this. So, just to recap what we did is that 

we saw that just Monte Carlo uses some systematic prior sample. 

 

Whereas the Markov chain tells you that the next sample will depend on the previous sample 

and Metropolis Hastings has a specific way of selecting the next sample it accepts a few and 



rejects a few, at the end of it you have a bunch of sample points that are usually efficient in 

concentrating on the regions of the probability space where most of the probability is actually 

concentrated.  

 

So, that is the basic idea behind Metropolis Hastings Markov chain Monte Carlo. In the next 

video I will go back to the slab example and show you with the same slab example I will show 

you what happens if we do this exactly the same algorithm that I showed you just now. So, I 

will see in the next video where you will see an interesting demonstration, thank you. 

 


