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What I will do. Now is to show you a MATLAB code which will again be uploaded in your 

respective folders by the NPTEL team. But this MATLAB code will just repeat what I just 

showed in theory in the previous video. So, the idea is very simple we have the same old 

problem the slab the given data. Now I am going to show without prior one case and I will 

show you another case with the prime just like we did in the last video. 

 

So, when we try to solve this problem using the offline Bayesian approach as I said the offline 

Bayesian approach means, you automatically take samples and you just sample the distribution 

function there. So, we have only one parameter to solve for. So, we are just solving for the heat 

flux. Now what we will be trying to do is to estimate the following the most probable value 

which is the peak of the distribution. 

 

We also want the mean of the q distribution, which is given by the expectation if you remember. 

So, 𝑞1 will basically be the expectation of q via the PDF and of course we can also find out the 

variance of the q distribution. Now remember we do not actually have originally the full PDF 



of q. So, what we can do is to we can sample the probability, I will come back to this point in 

the next video. 

(Video Starts: 02:14) 

 

And in fact, you can only sample the numerator of the probability if you remember well the 

denominator from the Bayesian is actually missing. So, there is a sigma there, there is an 

integral there, which we do not calculate. So, we do this in steps as I had written in the previous 

video you calculate you create the original data set basically give all the given data here.  

 

So, for example the physical problem parameters are thermal conductivity is given, the length 

is given, the temperature at the right end is given. Now we make some measurements and let 

us. Now include that data if you remember plus minus 1 is the uncertainty in the thermocouples, 

this I have written as Sigma underscore M where m stands for measurements then the 

thermocouple locations x and the thermocouple measurements t. So, these are the 

measurements 𝑁𝑚 is the number of measurements that we have made. Now next we actually 

create the sampling points.  

 

Now this is where we will differ when we come to the Metropolis Hastings Markov chain 

Monte Carlo method in this case, we are simply creating offline sampling points. So, we create 

a sample a static sample. So, if you look at 𝑞𝑠 you can see, it is simply a linear step between 

900 and 1500 we have 11 samples. So, let us just run this code sequentially till now. So, I will 

just run it just so, that we can deal with this step by step.  

 

So, if I step this you can now see what 𝑞𝑠 is. So, the sample 𝑞𝑠 in fact we can write this down 

is 900, 960 up till 1500, x of course is the locations and T is the temperatures that we have 

measured so far. Now here is the key step, this is basically the Marco chain step. If you want 

to see it that way basically what we do is we have these ground measurements 𝑇𝑖 but for each 

q. So, if I step through 1 through NS for each q, I will actually generate the actual temperature 

that we are predicting and find out the differences. 

 

So, let us do that. So, I have just created these matrices if you remember 𝑃1, 𝑃2, 𝑃3 will come 

back to this point but if you look at the simulation. So, let me write this down here just so, that 

you can see this. So, we are at the first step, you notice that the actual temperature is these six 



values, whereas our value of q we are taking the first sample we chose q equal to 900 and that 

predicted this new set of temperatures, which is what I call the simulated temperature.  

 

Now once you do that you can actually calculate, what the difference between what we 

predicted and what the truth is. So, you can see so, this is the difference we had seen this in the 

last video also. Now once you have this, you can actually create S and let me write down S is 

now 6.286, what this represents is the gap or the sum square between what I predicted which 

is T Sim and what the ground truth was.  

 

So, this is one single number, this is of course the sum of the errors or sum square of the errors. 

Now 𝑃1 remember is the numerator, this is the numerator of the PDF of q. So, this is defined 

by if you remember actually the noise of q. So, minus half times y hat minus y Square, divided 

by now notice the sigma M Sigma m is the error in each of the thermocouples so that is what 

we are doing. 𝑃2 let us come here.  

 

Now 𝑃2  is used in order to calculate the mean remember expectation is calculated as whatever 

value we are interested in in this case q, multiplied by the probability distribution integrated. 

So, that is what we actually do so, instead of having P sorry instead of just having the PDF you 

have q times the PDF. Now I have defined a new quantity which I call 𝑃3𝑎. So, let me show 

that, this I did not write in the last video. So, let me write it down here.  

 

Now this is simply q Square. Now why is this useful? We will use the property that expectation 

of or variance of q is expectation of q square minus expectation of q the whole Square. So, this 

formula you remember. Now why is this useful? this is useful because when I want to calculate 

𝑃3 notice this property 𝑃3, 𝑃3 requires 𝑞1, 𝑞1 requires me to actually find out sum of 𝑃1, 𝑃1 and 

I do not have it yet I will have to run through the whole iteration in order to calculate sum of 

𝑃1.  

 

So, I do not want to wait to do that. So, instead of that I will simply sum I will find out 

expectation of q Square then I will subtract expectation of q the whole square and that will give 

me the variance. So, I am using that formula that we had derived earlier on in this course. So, 

so 𝑃1 is just the PDF this one is the numerator of the mean or the expectation and this is 

numerator of expectation of q Square.  



 

So, that is what 𝑃1, 𝑃2, 𝑃3𝑎 are so, these are the quantities which we have calculated. So, if we 

keep on doing that and we continue let me just stop and I will run it once more. So, if I come 

here, I have calculated all these quantities. Now you can see if I write down what 𝑃1 is, it is 

mostly 0 except for a couple of values which is really small values as you saw value, we were 

calculating it before also. 

 

Similarly, you can see 𝑃2 only two values light up and you can check 𝑃3 also for 𝑃3𝑎 and only 

two values light up here as well. After this we calculate the denominator which is the 

normalizing constant we can. Now calculate the posterior PDF and we can calculate the mean 

value and we can calculate the variance. So, notice I have calculated the variance as expectation 

of q square minus expectation of q the whole Square.  

 

So, that is how I have calculated it and sq is the standard deviation in q, which is the square 

root of the variance. So, that's what is calculated. Now finally I plot the PDF that I have 

calculated and you can see that here. So, this actually is the PDF. So, you can see point to point, 

it actually Peaks somewhere if I see this examine this value it Peaks at around 1260 and you 

give this chart PDF.  

 

Now notice again as I had mentioned in the last video, we are not sampling at many points we 

are just sampling at these 10, 11 points. Really speaking the PDF could be something really 

crazy. But what we tend to do is to actually move on and sample it deeper at these points that 

we have already calculated. Now we can also see the values of 𝑞𝑚, that we obtained I got 

1258.7 or 1258.2. I think we got 1258.17 the last time let us just check. 

 

Yeah, it is 1258.17 we can also check sq which is the standard deviation which is about 10.30. 

So, this these can serve as priors for our next iteration. So, let us do that remember that in the 

previous case I had now added all of this information. So, now you can see. Now we are going 

to move between 1200 and 1300. we are going to focus on the region where something 

important is happening.  

 

So, we will do that, but we will add a prior the prior will be 1258.17 as mu and we had chosen 

Sigma of 0.1 or 10 of 𝜇𝑃. Now there was an error in the previous video that I had shown in the 



values which I will correct right. Now not of 𝜇𝑃 and 𝜎𝑃 but while calculating the PDFs I made 

a small error, we let it be because the purpose of the last video was just to show you the 

procedure. 

 

I will correct that the values are not of great importance as far as we are concerned because 

these are toy problems. we still get reasonable numbers. Now you notice almost exactly 

everything else is the same, I have included the priors here, 𝜇𝑃 is 1258.17 and 𝜎𝑃 have chosen 

as 10 percent of 𝜇𝑃 this one should be 1200 to 1300. we have 11 samples that also remains the 

same, everything else is the same, except we have the small change. this 𝑃1 the basic probability 

distribution now depends on two parts. 

 

As I had explained in detail in the last video, the first part is the data loss which is pi minus T 

simulation square and the second part is the loss due to the prior. So, in some sense you can 

say that a is the data loss and b is prior loss. So, that is this means how far is my model from 

the current data and this asks the question how far is my model from the prior information that 

I already have. So, we use all this.  

 

So, for example I mean again I give this kind of detective story example, but let us say there is 

a detective story and you know you come somewhere a detective comes and sees a murder. 

Now all the data points towards let us say somebody that you really know I mean you really 

know some friend or relative of yours and all the data points there, but your prior information 

is that that person could not do some such thing.  

 

So, these two things are in conflict what prior data says and what current data says, if those 

who are in a conflict you have to find out the mean between the two, you have to find out some 

way of optimizing both these. So, remember I said I made an error in the previous video I had 

missed this factor of two in the previous thing. So, some of the numbers were wrong in this 

case with the with one extra prior.  

 

So, we have added this prior and there was an error in the previous video. So, let please do in 

case you are going by those numbers please do not get confused if you calculate them, you will 

find them off by a little bit anyway, I have corrected that here in the board um again P 

simulation is exactly what we had derived in the last video minus q by kx plus q L by K plus 



PL and everything else remains the Same the only thing that changes here is this power of s 

this s.  

 

Now becomes a plus b and a is the data loss and b is the prior loss. we will look into this 

multiple loss terms later on when we come to the machine learning portion also, especially 

when we come to physics informed neural networks. Again, if you see here the entire code is 

practically the same, if I compare the code here sorry the code here with the code here the only 

extra thing is I have an extra line with a and b defined.  

 

So, a is now the data loss and b is now the prior loss and S is a plus b and I have put a factor of 

half because it is common for both of that and this again remains simply just Sigma n Square. 

So, include this everything else remains the same and we can now happily run this and you will 

see we have a much more better-informed network here. Let me rerun this because so now you 

can see we are getting things in greater detail here. 

 

Of course, the peak is at around 1250, I think I had given 1242 or some such thing or 1240 in 

my previous video. But that was because of an error in update you can also see that the new 

mean has changed the new mean is now 1252, instead of the prior which was 1258. So, it has 

come down a little bit with the new information and the new standard deviation is around 9.66. 

So, here a little bit surer despite the large uncertainty in the previous things.  

 

So, now one thing we can try playing with is this 𝜎𝑃, I can reduce 𝜎𝑃 and say I am a little bit 

more certain about this and I can say 𝜎𝑃 is let us say 10 and if I run that, oh I think I ran it 

incorrectly, let me just run back once again. So, let us say I gave 𝜎𝑃 of 20. So, you can see what 

happens if you run 𝜎𝑃 with 20 you are fairly certain about the prior. So, the prior gets weighted 

very highly and it does not move very much it just gets stuck at around 1258 or 1260. 

 

So, if this is why this is one of the reasons why we take 10 percent of 𝜇𝑃 here and give some 

leeway so, how we want to compute the posterior and then you get a little bit more detailed 

procedure. So, we will take this 10 percent as a general rule of thumb in creating posterior 

distributions and using prior distributions. If you use a lower 𝜎𝑃 you will get sharper posteriors 

if you use a higher 𝜎𝑃 you will get a little bit more elaborate posterior as you can see here.  

 



So, here we saw a simple coding example using the offline Bayesian. In the next video I will 

simply give you an idea though not in too much detail about the sort of state-of-the-art method, 

which is Metropolis Hastings Marco chain Monte Carlo. So, I will see you in the next video, 

thank you.   

(Video Ends: 18:57) 


