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Welcome back, this is week six of inverse methods and heat transfer. In the last video we 

discussed why probability is important within inverse methods we also looked at definitions of 

sample space a random experiment and what a random variable is here we look at two major 

rules that govern probability which we call the sum and product rules. I am going to show those 

within the discrete setting here. 

 

But these apply equally to the continuous setting which is where it is more important and we 

will discuss that further in the next week. It is often intuitive to work within the discrete setting 

and I will mostly work within that except for the end of this week but it is most useful to 

actually apply these within the continuous setting. 

(Refer Slide Time: 01:13) 



 

So, a quick acknowledgment many of the ideas that I have communicated here and the pictures 

also have been borrowed from the slides created by Dr Christopher Bishop's excellent book 

called Pattern Recognition Machine Learning, I had already told you about that earlier within 

this course. This book is available freely online, thanks to Microsoft research. you can take a 

look at that book the slides were borrowed some of the pictures from the slides were borrowed 

with his permission. So, this is just an acknowledgment. 
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So, the ideas that we will be covering within this video are that of joint marginal and conditional 

probability. Now marginal probability will not come up too much with an inverse Methods at 

least the way I am teaching it in this course but joint probability and conditioning probability 

will come up. Marginal probability is sort of an intermediate idea that we will be using of 



course it is an independently important idea later on also with the probability theory or even 

generally with an inverse method. 

 

But we will not be using it much. we will show two rules of probability that arise naturally the 

sum Rule and the product rule you will see that these are very intuitive rules and finally we 

will see that how product rule leads directly to basis theorem within the end of this video.   

(Refer Slide Time: 02:34) 

 

So, here is a simple example that we are looking at again like I said I borrowed it from 

Christopher Bishops book. Now like I said it is a discrete example and you might not see any 

relevance to inverse methods here, but I will explain how similar things occur even within the 

continuous setting shortly. but for now, just humor me and assume that this is an important 

problem. So, let us say you have two baskets and one of the baskets is red and another basket 

is blue. 

 

Let us say within the red basket you have these six oranges and two apples and within the blue 

basket you have three apples and one orange. So, you just the orange corresponds to an orange 

and the green corresponds to an Apple. So, oranges I will denote as o and apples the green ones 

are they not as a. Now what happens is when you put your hand let us say you are not able to 

see which hand or which basket you are putting your hand in and let us say you pick the basket 

the red basket the probability of 0.4. 

 

And you pick the blue basket with a probability of 0.6 and of course this has six oranges and 

two apples and this one has one orange and three apples. Both baskets are not equally likely 



and of course if you pick something like an orange within it is not equally likely that you will 

get an orange or an apple, but each fruit is picked up with the same process it is homogeneously 

mixed. For example, if I come to this basket and I pick an orange then the likelihood of picking 

an orange actually six by eight. It is not as if oranges are below and apples are above and like 

what is shown in the picture. 
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So, if we look at this picture here let us look at what the random variables are. Now there are 

two random variables. So, the random variable B is which basket I pick and the random variable 

F is which fruit I pick within that basket. So, you take your hand, you put it in a random basket, 

and you pick out a fruit and you land up with both a basket that you pick from as well as a fruit. 

So, there are multiple questions that you can ask at this point. for example, you can ask a 

question like which basket did I pick randomly. 

 

If I just randomly touch something, I could ask which basket did I pick and you know that you 

will pick by the numbers given here the red basket with probability 0.4 and the blue basket with 

probability 0.6. Also, you could ask which basket did I pick, given that I picked an apple. Now 

this changes things. So, suppose you put your hand and you picked up an apple you might. 

Now want to think which basket are you more likely to have big.  

 

Now notice that from this basket you are more likely to have picked an apple anyway because 

it has more apples and also this basket was more likely. So, now the answer no longer will be 

blue with the probability of 0.6, if I already know I picked an apple it is probably more likely 

than 0.6 that I picked the blue basket. So, that would be the example of a conditional probability 



case. So, let us come here and look at it sequentially before we come to this idea of joint 

marginal and conditional probability.  

 

So, we let us make some trials. So, let us say we made 100 trials, that is somebody sat there 

and kept all picking up fruits, saw which fruit they picked which basket they picked and now 

made a table of how many they picked this should remind you of the histogram. Now we are 

dealing with two variables rather than one variable. In the previous video we primarily dealt 

with one variable. When you deal with two variables it becomes important to deal with what is 

known as joint probability.  

 

Now let me take a brief moment here and talk about how this is relevant to inverse methods. 

So, remember once again, when we dealt with a slab example, we had let us say some six 

thermocouples. Now the question is we measure temperature here, let us say it came to 15 

degrees became measured here and let us say it came to 14.7. So, we can treat this as two 

separate baskets. So, this could be the Red Basket and this would be the blue basket and we 

could also treat the temperature as picking an orange or an Apple.  

 

So, remember this is now a continuous variable of course it is sample space is continuous 

whereas here in basket, you have a discrete sample space. So, you have basket equal to red or 

you have a basket equal to Blue these are the two samples. it is similarly the fruit has a sample 

space of Orange or Apple. Whereas here the sample space is infinite and you will have 

temperature variation which is infinite similarly sample space here is also infinite but you do 

have to discrete thermocouples you could either take this thermocouple or that thermocouple.  

 

Now we come here and we ask what is the probability that the temperature in the first 

thermocouple was 15 and the temperature in the second thermocouple was 14.7. So, that is the 

sort of question that we can ask and that will be similar to the joint probability case that we will 

be discussing here. So, let us come back to this case. There are multiple ways of equating this 

as we will see in the next week to a joint probability case when we come to an actual inverse 

methods problem.  

 

So, coming back to this let us say I made 100 trials just like I made 100 measurements I made 

100 trials and I am going to make a Frequentist sort of assumption here and I am going to 

assume that things are going to fall exactly in proportion to their probabilities this will happen 



really speaking only for infinite trials, but for the sake of demonstration we are going to do 

this. So, we are going to say well the basket would either be red or it could either be blue 

similarly the fruit could either be an orange or it could be an apple.  

 

Now let us see the total number of cases that we come up with in 100 trials. So, once we make 

100 trials in how many of those cases would we have landed up in the red basket. So, the net 

number of cases where we have landed up with the Red Basket is 40. Assuming it goes exactly 

according to proportion. Similarly, the net number of cases we would have landed up in the 

blue basket would be 60 because its probability of picking that is 0.6.  

 

Now within this 40, what is the possibility that I got an orange, that is the basket was red and I 

picked an orange. Now I come here I see orange is 6 by 8 of the fraction of roots here. So, the 

probability of picking an orange is six by eight given that I have already picked up the Red 

Basket. So, 6 by 8 into 40 of the cases which comes through 30. So, in 30 cases I heard I have 

picked an orange and in the rest of the 10 cases I would have picked an apple. 

 

Similarly, here once the basket is blue in three-fourths of the cases that is three-fourths of the 

60 cases I would have picked an Apple. So, this will be 45 and in 15 of the remaining cases I 

would have picked up an orange. Now we can also sum it up in another way we can say that 

within the 100 trials in 45 of the cases I picked up an orange and then 55 of the cases I picked 

up an apple. How would that have happened in the 45 of the cases either I picked up the rest 

Red Basket, in which case 30 of those cases would have turned out to be orange 30 out of the 

40. 

 

Or I would have picked up the blue basket in 15 out of those 60 would have turned out to be 

oranges. So, we can sum this up in two different ways this is what will lead to what is known 

as the marginal probability and each individual one will lead to the Joint probability. So, let us 

see that in the next slide. 

(Refer Slide Time: 12:24) 



 

So, we can now use this box that we had to define this idea of joint probability. A joint 

probability is obviously for more than one random variable. So, you want to say what is the 

probability that event A occurs as well as segment B occurs and of course we can. Now talk 

about even C occurs D occurs etcetera. Once again going back to the slab case we can talk 

about six random variables and talk about the joint probability of all of these temperatures 

hitting the values that they did give our measurement.  

 

So, we are actually trying to find out the probability of a specific event which is in turn made 

up of six events. In this case we have two possibilities for example or two random variables 

here, which is probability for example probability, that the basket was red and the fruit cause 

an orange. So, notice this this comma here is like an AND so, that is why the word joint occurs 

hearing. So, for example we would say notice the notation probability something first random 

variable b equal to red AND fruit equal to let us say apple.  

 

So, x is the first random variable y is the second random variable. In our slab case this is now 

a continuous case. So, we could say something like probability that the temperature lies in the 

range 10 to 15 and the probability that the second temperature lies in the range 12 to 17 

something of that sort. Now you might recall that obviously these temperatures are given 

specific values. So, where is this range coming from that is where you must remember our 

Sigma there is uncertainty in measurement. 

 

You will make multiple measurements and you will say the range of measurements I have made 

with uncertainty is so much and that is where these ranges come from. For continuous variables 



these ranges are far more important than specific values which is where our uncertainties come 

in and automatically you will get our weighted linear regression when we come put continuous 

random variables in the next week.  

 

Returning back to this example, let us generalize this this is of course the basket case with two 

variables and each of them had only two possibilities. You could have a more general case 

where you have two random variables x and y and x has five possible values. So, x has 𝑥1,  𝑥2,   

𝑥3,   𝑥4,   𝑥5, let us say it is a five-sided Dice and you are throwing and you could get the 

number 1, 2, 3, 4, 5 and similarly y has three possibilities in that case here we had a two cross 

two, here we would have a 5 × 3 5, because x has five possible values and y has three possible 

values, we are just generalizing this to a generic picture.  

 

So, just like here, I was concentrating on some particular block, this would be the block which 

talks about in how many trials we had the red basket as well as the fruit as an orange. This will 

talk about in how many cases did I get the jth variable for y and ith variable for x. So, for 

example the number of trials, please notice here X equal to 𝑥𝑖 and Y equal to 𝑦𝑗 for example in 

the five-sided dice I threw four and the three-sided dice I threw two.  

 

So, that would be an example of this case. of course, once again in our continuous case both 

these are infinite which is why we give ranges. So, both these are probability density functions 

and you have to be a little bit more careful while defining those we will come to that in the next 

week. Now it is easy to now talk about what is the probability that after my trial I pick up a 

fruit which was orange from the red basket.  

 

So, in that case all we need to do is to divide the number of cases we got this the joint number 

of trials divided by the total number of trials using the fundamental idea of probability. So, for 

example probability that the basket was red and fruit was orange. Now becomes 30 by 100 it 

is 0.3, similarly probability that the basket was blue and the fruit was an apple is 45 by 100. 

and the probability is 0.45 in general, it will be 𝑛𝑖𝑗 by N where N is the total number of trials.  

 

So, that is what the joint probability is. Now you can imagine once again I will go back to our 

slab case you can. Now imagine what is the total number of cases or what is the joint probability 

of temperature being in some range here and being in some range here you have to. Now in 



imagine an infinite trial case where you are actually looking at all the physics of the problem 

and seeing where all in how many of these cases.  

 

Now this will look because it is all infinite cases you have to know how to divide Infinities and 

we are not going to get into the limit process of that there is something called measure theory 

etcetera. We will just take it as if we took a lot of measurements maybe a million measurements 

which is what we will do next week. We will do something called Monte Carlo which actually 

takes a finite number of samples and assumes just like we did here. 

 

That even though with 100 we took exact probability ranges or exact fractional ranges we will 

do the same thing there and there are several clever ways of doing that. So, please do keep that 

in mind I hope at least this example is reasonably clear what joint probability is. 
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So, once joint probability is there, we can also talk about something called the Sum Rule and 

the marginal probability. the sum rule is a very simple thing. So, the idea is this. So, we want 

the number of cases let us say X equal to 𝑥𝑖. So, for example I could ask the case in how many 

cases was the fruit and orange. So, that could be an example of X equal to 𝑥𝑖. So, that would 

be simply the marginal probability that is what is defined as the marginal probability I will 

explain very shortly why it is called marginal.  

 

So, the way we do it is the number of cases where the fruit was an orange and we picked the 

red basket plus the number of cases where the fruit was orange and we picked the blue basket, 

this is simple you might actually say why am I struggling. So, much I might as well take this 



total case which I have summed up but many times we just have this table and this summary is 

not there I have put in here the sum for a specific reason.  

 

So, we say 30 cases fruit was an orange, basket was red, 15 cases fruit was an orange, basket 

was blue put together we have 45 cases where the fruit was an orange. So, randomly if I look 

at all the cases where the fruit was an orange that would be 45 by the total number of Trials. 

So, the probability that a pick an orange is 0.45 out of either of the baskets and similarly the 

probability that I pick an apple from both these cases will be 0.55.  

 

So, if I do 100 trials never look at the basket only look at the final fruit in 45 percent of the 

cases I will get an orange and 55 of the cases I am going to get an Apple. Now um one thing 

that is kind of strange here and it is not immediately obvious is if you look at the total number 

of fruits this is one place where probability does not always reasonably work. Total number of 

fruits, the number of fruits oranges is actually much higher than the number of apples. 

 

And yet the probability of picking an apple is actually greater than the probability of picking 

an orange. So, this is one of these non-intuitive things or sometimes even counterintuitive 

things that happen with probability Theory, we don't have the time to go into that within this 

course but that is one of the major reasons why statistics can be confusing. So, once again you 

can see the final numbers the numbers speak for themselves when we work for numbers it is 

obvious.  

 

So, you get 45 cases total oranges it is just that it is overwhelmed by the case where the basket 

was blue even though a greater number of oranges seven compared to four it is not as if you 

are getting uh 7 by 11 for orange it is actually 0.45 you have to be careful to split this. So, let 

us come to this probability which is called the marginal probability. Why is it called the 

marginal probability because this is a margin. 

 

These numbers were written within margins when people drew these tables, historically this is 

what was done. you make the table then write this sum within the margin you would have seen 

the second Excel sheets also you know row some columns that is how you write it. So, if I write 

this number 𝑐𝑖 is simply the summation of all these 𝑛𝑖𝑗′𝑠 within this column. This this 

summation is within j you can see this 𝑐𝑖  is, 



𝑐𝑖 =  ∑ 𝑛𝑖𝑗

𝑗

 

 And 

𝑃(𝑋 = 𝑥𝑖) =  
𝑐𝑖

𝑁
. 

 

Whatever is the total sum this is what is all oranges that divided by total number of trials, 

whether you do this sum or this sum you will always end up with the same number of trials. 

So, this number divided by this number is what is called the marginal probability. it is a sum 

of the probability for one specific case. You could also do the marginal probability for basket 

being red. 

 

But we already knew this I mean it is not a new quantity, we already started with this it is 40 

divided by 100 which is of course 0.4. So, the more calculated probability is the marginal 

probability that the fruit is an orange. So, you can write this as in general this formula. this is 

what is known as the sum rule of probability. What it says is probability that I want one 

particular variable is the summation of all possible joint probabilities.  

 

So, this is called marginalized it is an odd term especially given the social connotations. this is 

a marginalized over J marginalized over y something of that thought you would say. So, 

marginalizing over all possible baskets, I get the probability that the fruit is an orange as 0.45. 

So, all this means is I sum over all possible cases. Now X equal to 𝑥𝑖 is given I know that I 

want an orange fruit but it could have been from a blue basket or from a red basket sum over 

those probabilities again we tend to do this intuitively but it becomes hard to see this when we 

come to multivariable or continuous cases that is why I am writing this out explicitly. So, this 

is what is known as the sum rule of probability and it is one of the key ideas or one of the key 

rules that govern probability Theory. we will also come to the probability the product rule of 

probability shortly. 
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The product rule of probability arises naturally out of this idea of conditional probability. So, 

let me give you a sort of colloquial example of conditional probability and then we will come 

to this specific example and then we will also write the product rule of probability. So, the 

colloquial idea of or the simple idea of conditional probabilities, I let me ask a question like if 

you walk on the road what is the probability that you will meet an Indian.  

 

Now if all of you are watching in India your immediate answer would be well it is very high 

because the number of people of foreign origin in India is actually pretty small. But if you are 

watching this video abroad you will have a completely different answer because you have a 

condition automatically in mind. Now the trick about conditional probabilities there is always 

a condition there is always a prior that we have in our mind which we will use later of our bayes 

theorem.  

 

So, suppose somebody is watching this video somewhere in Africa this number reduces if 

somebody is asking watching in West Indies this number slightly increases if depending on 

which country, they are within especially within the African continent this number can increase 

or decrease if you are in China the number again changes that is what is a conditional 

probability if I tell you, it could be anywhere in the world.  

 

Now the probability that you meet an Indian then becomes approximately the population of 

Indians in the entire world depend divided by the population of the entire world. Now this is 

where uh conditional probability comes in the condition affects what the denominator is and 

what the context is and what the probability is. So, similarly here if I ask after 100 trials what 



is the probability that I picked an orange then you will say well you didn't give me any further 

information the probability is 45 by 100.  

 

So, that would be simply probability that the fruit is an orange, but I give you something more 

specific I say what is the probability that the fruit is an orange given that the basket was red. 

Now your number immediately changes because your context changes. Now this becomes 30 

by 100. So, this is the notation that we use given that some extra information is given. if nothing 

is given you assume that this simply says that a trial was made.  

 

So, no context means a trial was made and I cannot give you any further information, but as I 

give you more and more and more information, you can give me more and more specific 

probabilities what is the probability that it will rain in India. Now if I give you a season and I 

give you a specific space or place then the conditional probability becomes more and more 

specific and more and more exact and more representative of what is actually happening.  

 

So, more information changes probabilities, that is the basic idea behind conditional 

probability. So, we will use that with great power in the next week let us come back to this. So, 

a simple notation probability that Y is 𝑦𝑗 given that. So, this bar rotation has chosen very 

carefully as you will see connects given that X is 𝑥𝑖. So, now this is easy once again we could 

decide something like this probability that the basket is red given that the fruit was an orange.  

 

Now this is an inverse question to what I was asking before this was probability that fruit is an 

orange given that the basket was red, but here something opposite is given to you are told that 

you picked up an orange fruit. Now how likely is it that the basket that you picked was red. 

Now we know that without any information the basket being red this point four but given that 

you picked up an orange.  

 

Now you can look at this and you can see that maybe that probability changes because if it was 

a red basket I would have more likely picked than orange than if it was a blue basket. So, this 

probability should hit weigh a little bit more heavily towards red with no information it was 

0.4 with information, it should be a little bit more than that. So, now let us look at this in a more 

general case. 
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So, suppose I want the probability that this element in y was paid given that I picked xi, this 

becomes 𝑛𝑖𝑗 in this case it is in 10 divided by 𝑐𝑖 by 55. let us make a concrete example 

probability. So, let us take this that the basket is red given that the fruit is an apple. Now how 

do we do this we say the basket is red and the fruit is an apple is 10 but I already know the fruit 

is an apple how many such cases are there only 55 cases out of the total trials. 

 

Out of 55 trials in some cases in 10 of those cases I would have added up with a red basket and 

45 of those cases I would have landed up with a blue basket. So, this becomes 10 divided by 

55 not 10 divided by 100; 10 divided by 100 simply would be something else how many cases 

was basket red and the fruit red. So, fruit and apple so, this is the conditional whereas 

distinguish this from this case this is joined.  

 

So, people often can get confused between these two. So, remember what is happening here. 

Here you made all these trials and out of those trials you want to find out how many of these 

were read as well as the fruit was an apple. Now this is a more restricted case this says amongst 

all the trials in a few of them the fruit was an apple but amongst those a few of those baskets 

were red which one was those and then you have this kind of case 10 divided by 55 which is 

why n ij is the total number of cases where both are proved. 

 

But 𝑐𝑖 is the only number of cases where X was 𝑥𝑖 as well as and I was 𝑛𝑖𝑗. So, this is why you 

take 𝑛𝑖𝑗 divided by 𝑐𝑖 here and similarly if you do it in this direction you will get 𝑛𝑖𝑗 sorry if 

you take the total number of Trials you will get n ij join probability you get 𝑛𝑖𝑗 divided by 



capital N this is 𝑛𝑖𝑗 divided by 𝑐𝑖  . Now this becomes a little bit clearer when we talk about 

probabilities here numbers are more confusing whereas probabilities are clear.  

 

So, let me ask this what is the probability that the basket was red and the fruit was an orange 

this is an AND condition this is what I will do is this. Let us assume that I first picked the 

basket and it was red. the probability that the basket was red. Now once I am given that I can 

say I already know the basket is red, what is the probability the basket is sorry the fruit is an 

orange. What is now the probability that the basket is red given that the fruit is orange. 

 

If you multiply the two you will get the probability that the basket is red and the fruit is an 

orange. You can also flip this you can flip this in the following way you can say I want a red 

basket and an orange fruit. I can get it into this I first pick the basket then I say that the fruit 

was an orange and given that the basket was red or I can say that first I picked the orange and 

say what is the probability that basket was red given the fruit is an orange.  

 

Now this is an easier calculation to make this is a more difficult calculation to make but 

switching between these two is how we get this idea of the base theorem which will come to 

shortly. 
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So, here are the rules of probability in a simplified notation remember original one simply says 

that if I want a single variable, I can sum over all the possibilities. If I say I have 𝑃(𝑋 = 𝑥𝑖, 𝑌 =

𝑦𝑗 , 𝑍 = 𝑧𝑘), then I will have to do a double Sigma over all possible values of j and all possible 

values of k and then I will get the possibility that 𝑋 = 𝑥𝑖. So, here is a simplified notation really 



speaking you should use this notation but I am going to use this just for simplification 

probability of X, Y is summed over y gives me probability of X. 

 

And the product rule is if you want both X and Y assume X is given and then say y given that 

X is given is the product rule. So, this is the conditional this is the joint and this is called the 

prior as we can see in the next slide. 
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So, here is a Bayes rule. bayes rule I am going to just define it sorry derived. it is a simple 

derivation assume the product rule. So, the product rule says that P of X and Y occurring the 

basket being red and the fruit being orange is probability that the fruit was orange given the 

basket was red multiplied by the probability that the basket was red. Now as I showed you in 

the previous slide. 

 

You can flip this. you can ask the question what is the probability that the fruit is orange and 

the basket is red. now notice these two have to be the same because it is an AND so, it really 

does not make any difference whether I say basket is red and fruit is orange or fruit is orange 

and basket is red whereas conditional it does not commute 

𝑃(𝑌|𝑋) ≠ 𝑃(𝑋|𝑌) 

That is another easy way for you to see the difference between a joint probability and a 

conditional probability. 

 

For example, a joint probability would be what is the probability that you are walking outside 

with an umbrella and it is raining, which is the same as the probability that you are that it is 



raining and you are walking outside with an umbrella. So, these two are exactly the same thing 

however if I flip the question and I ask what is the probability that it is raining given that you 

are carrying an umbrella.  

 

So, let us say you stepped out of the house carried an umbrella what is the probability that it 

suddenly started raining this is different from saying what is the probability that it is raining 

sorry what is the probability that you are carrying an umbrella given that it is raining. Now that 

is much higher, you're about to step out it starts raining what's the probability that you're going 

to carry an umbrella. 

 

So, notice that conditional probabilities do not commute, unless there are some special cases 

but these always commute with joint probabilities commute because they simply mean that all 

the events occur together. So, since these two are the same you can simply use these two 

equations let us say equation one and two equate them. So,  

𝑃(𝑌|𝑋)𝑃(𝑋) = 𝑃(𝑋|𝑌)𝑃(𝑌) 

 

So, now you can move one of these below it. So, let us say I move this below and I get, 

𝑃(𝑌|𝑋) =
𝑃(𝑋|𝑌)𝑃(𝑌)

𝑃(𝑋)
 

This is what is known as base theorem. So, this is called the posterior probability. posterior 

means afterwards. This is usually called prior probability, which is called the likelihood. So, 

we will see this in greater detail in the next week. 

 

But this is a powerful theorem even though it is coming through a very simple means. this 

becomes clearer the use of this becomes clearer with examples again you would have seen this 

in school but just for completion’s sake we will do a couple of simple examples in the next 

video. So, in this video we looked at the sum rule, the product rule and bayes theorem and we 

will see an application of bayes theorem in the next video. So, I will see you there thank you. 

 


