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Welcome back. This is week 6 of inverse methods in heat transfer we are going to review basic 

probability Theory in the series of videos in week six and we will apply this basic probability 

Theory to some probabilistic methods in week seven. Now so far, the methods that we saw, 

were methods that were inverse methods that utilized some functional fit. So, a functional 

model the functional model is something like �̂� =  𝑤0 + 𝑤1𝑥 or quadratic or exponential 

etcetera.  

 

So, these models were either linear or non-linear and we saw that we needed different 

approaches to solve for linear or non-linear models. Now within that you would have seen a 

subtle thing, you might remember that we had our weighted linear regression where we saw 

that not all data points of which we were doing the inverse were weighted equally. Now here I 

had introduced some term 𝜎 which was basically the uncertainty in measuring the temperature 

of the thermocouples point. 

 

But I am measuring the uncertainty in the measurement made by the thermocouples. Now this 

is what is going to be extended within this week and the next week. The idea is we actually 



account for the fact that there is uncertainty in measurement. So, this I am going to talk about 

a little bit further, but there are different sources of uncertainty and it turns out that this is a 

powerful series of methods which arise from probability that handle this uncertainty. 

 

In fact, we will see that the probability method is actually a superset. So, probability methods 

in some senses are more powerful than the functional methods. We will see next week that all 

the methods we derived so far can actually be derived from the viewpoint of probability. of 

course, this is a really deep subject as is of course probability theory. So, really speaking we 

should spend about 40 to 50, 60 hours just reviewing Probability Theory and Basic Statistics. 

 

We do not have the time to do that. we will just spend an hour or two I am assuming that you 

are already familiar with basic counting probability, though I will review it and we will have 

one or two such review questions in the assignment. But the purpose here is just a review and 

not really a full-blown theory I will try to make this compact. So, that you can utilize these 

insights within the next week when we come to some Bayesian techniques and Markov chain 

Monte Carlo etcetera. 

 

Few inverse techniques that have been that have proven to be extremely powerful in practice. 

This is just a basic introduction once again I am just re-emphasizing this the purpose of this in 

case you found this find this a little bit question or a doubtful or a little bit confusing, please 

ask questions within the Forum and will be happy to answer it. So, let us go forward and just 

review some basic probability theory for this week. 
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So, what is probability? Probability as all of you know is just a mathematical framework for 

representing uncertainty. as I said a little bit before the reason, we are looking for probability 

within inverse methods is, it actually gives us multiple ways of handling the inherent 

uncertainty in physics, especially in inverse problems. Remember that inverse problems deal 

with a series of measurements and we want to find out the inherent cause for these 

measurements. 

 

Again, I will go back to the example we looked at, let us say we have a fin we have a whole 

bunch of thermocouples we measure the temperature and we want to find out what was the heat 

transfer here. So, this is the cause and this is the effect. Now of course there are a whole bunch 

of sources of this uncertainty in physics. for example, you could start right at inherent 

randomness in the system. 

 

For example, you could start with Quantum fluctuations or fluctuations in outside temperature 

T Infinity. So, that would be some a little bit of Randomness in the system in the boundary 

conditions. So, that is one place. Another Place Another source of uncertainty is you could 

have incomplete data. So, for example here we actually do not have temperature measurements 

everywhere we only have them at a few places and even within that.  

 

So, your main partial observations or you might have made errors in the measurement of the 

thermocouples. So, for example any observation so, if you are dealing with MRI there could 

be noise in your detector you could have a whole bunch of series of problems in how you made 

the measurement itself. Then finally you could be modeling the problem incompletely. For 



example, we have been modelling our convenient slab problem as if it is 1D but really speaking 

the problem is three dimensional. 

 

Again, we assume that all the dimensions are the same but this could be wrong or more 

seriously the modeling itself is incomplete in that even if you apply a full 3D law and you put 

geometric certainties and you do not have any inherent Randomness in the system. you still 

cannot model it because uh you do not have sufficient resolution. So, that is where things like 

turbulence models when you have turbulent heat transfer etcetera all these things come in.  

 

So, there are multiple sources of uncertainty and we are going to club those together within this 

one huge thing of saying, there is some uncertainty in the system let us put that together and 

talk about probabilities and also remember this is extremely useful for ill-posed problems 

because as you know the same measurements as we saw within our functions could be drawn 

or could be created by multiple infinite models.  

 

So, we saw that briefly during overfitting also. So, all that which model it is, how accurate the 

model is, how accurate is the data, all these uncertainties put together come into this one big 

picture of probability and um so, this is where probability theory is useful in inverse methods. 
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Now there are two ways in which we use probability ideas within inverse problems. This is 

also true of machine learning as we will see later in the next uh three four weeks from week 

eight to week 10 or week 8 to 11, we will be looking at machine learning methods. So, you will 



see that there is a very close relationship between inverse problems and machine learning which 

is why we have included that within this course.  

 

So, the first use of probability ideas is within constructing models. So, the idea is remembering 

the models that we constructed So far, were well I will assume there is a function which fits 

this data in a least square sense. So, this is the functional approach. Now instead of that we are 

going to do something else we are going to say there is a probability distribution function I will 

explain what this is in case you are not familiar with it I will explain what this is within this 

video itself at least we will take a first step.  

 

Now this is a slightly different approach. what turns out is the functional approach is a special 

case of the probability distribution function. in fact, you can show that in some sense the mean 

of this probabilistic distribution is what appears as the function in what we looked at in the last 

four five weeks. So, one way in which we use probability theory is to construct or to make such 

models and then use them for inverse analysis. 

 

The other way in which you can use probability ideas is even if you use deterministic learning 

systems or deterministic models, they are only correct part of the time. So, for example you 

might remember goodness of fit, how good is the fit? we will see something else called 

correlation coefficient later on this week. So, all these ideas are statistical ideas. So, they are 

useful in analyzing models.  

 

So, even when we come to machine learning we will see that to analyze to tell you how good 

our model is, we still need a probabilistic hiding. So, that some other model could have fit this 

data even if it is a deterministic model. So, the model could be, So, probability can be used to 

make a model or to compare existing models. So, we will be using this theory in both these 

ways. So, please note is this in making models as well as analysis. So, these are the dual uses 

of probability which will be using within this course. 
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Within probability Theory, there are two different philosophies. I am not going to go too much 

into the philosophy in fact we are going to almost eliminate it other than this brief discussion. 

However, since it is a frequent discussion, it makes sense to just address it here. there is 

something called a frequentist approach and there is of course a Bayesian approach. Bayesian 

approach is what we are going to be using and it is particularly useful in fact for inverse 

problems. 

 

You will see it is almost impossible not to take a Bayesian approach uh to inverse problems 

which is why I am addressing this. Frequentist is usually the method that we have seen. So, for 

example if you say something like there is a 60 chance of rain tomorrow, then there are two 

interpretations the Frequentist approach is that you assume an infinite sample space I will 

Define what a sample space is uh later in this very video.  

 

But what you assume is let us say you have a coin and you are tossing a coin and you assume 

that if it tosses the coin infinite number of times, then half of those will be heads and half of 

those would be Tails. So, the next time I toss the coin and say there is a 50 chance of getting a 

head. So, this talks about some objective measure but the objective measure of course depends 

on something which is not really realizable that you can never do it in practice. 

 

But you can see it on the computer that is one advantage of doing coding which we will see 

next week. that you can actually start seeing it slowly converts to 0.5 the number of hits. But if 

I toss a coin 10 times, I might not exactly see five heads or five tails what I will usually see is 

something like three heads and seven Tails or seven heads and three tails and we will see how 



to deal with this inherent uncertainty within I mean this is sort of a meta uncertainty, uncertainty 

within uncertainty that we will see later. 

 

But what the frequentness approach says is that whenever I say 60 chances of rain, it means 

assume you are going to live in a universe which splits or in a multiverse and it splits into 

Infinite universes and out of all those universes in sixty percent of those universes, they are 

going to have rain and in this is sort of an objective measure. Now there are strong people who 

believe in this. in fact, the whole school of quantum mechanics in fact some of you might have 

heard of quantum computation that strongly depends on this frequentist approach. 

 

It strongly depends on assuming that there is some such objective measure of how things 

happen.  And we actually have technology that uses this. on the other hand, we have the parallel 

assumption of what is known as a Bayesian. So, this measures a degree of belief. So, in the 

sense that it is a degree of belief it is objective. So, you might say something like you know I 

did well in the exam. So, I think there is a 90 chance that I will get more than 15 marks. 

 

But nobody has actually done the experiment infinite number of times this is just your degree 

of belief or when you say 60 chances of rain, it is a rough estimate of saying well I am not 50-

50 sure I think there is more chance of rain than not. So, I am kind of estimating. Now you 

might think that this is vague but it turns out this is very powerful because we have an objective 

theorem coming out of this subjective idea which is known as Bayesian theorem. 

 

We will prove that we would have anyway seen that in school and purling in college, but we 

will prove that later on this, because this is as I said before this is almost indispensable for 

inverse methods why is that? Because when I say something like find out the thermal 

conductivity given a whole bunch of temperature measurements and if I give a particular 

material, I actually have an idea of what the thermal conductivity will look like. 

 

Similarly, if I ask you to estimate, you know how much will be the rainfall in Chennai you 

have an idea that it is not going to be thousand kilometers. So, you have a subjective idea of 

how much the range is going to be, in such cases this is called a prior and you can incorporate 

that the subject to believe can be incorporated back and there has been a lot of debate over the 

centuries and especially over the last century about which view of probability is correct. 

 



Because in some sense towards the end it has some subtle differences on how we calculate 

probabilities but as far as we are concerned within this course the probability the way in which 

the mathematics of probabilities work works the same way within our limited context, we are 

not doing quantum mechanics. So, if we have something like the probability of disease one is 

point 2 another the probability of disease 2 is 0.2 then probability of disease 1 and disease 2 is 

the multiplication of these two probabilities if they are independent regardless of whether you 

take a Frequentist approach or a Bayesian approach.  

 

So, we will stop talking about these philosophies and primarily take as we go ahead especially 

during the next week a Bayesian approach and that will be subtle it will be behind the scenes 

it is not going to be something that we explicitly talk about. Of course, we use base theorem 

but that is not only the deal with Bayesian probability. in case you are interested in this kind of 

debate I would recommend that you read some basic books on that. 

 

There is an excellent book which supports the Bayesian approach by E.T James it is an old 

book it is a really good book if you want to think about such philosophy. So, we are going to 

end the philosophical debate here and a move on to actual definitions of what probability means 

and what the various quantities that we are interested in are. 
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So, the definitions we are interested in again these are just so, that we have some simple terms 

to talk about. the first one and the most important one when we deal with probability is what is 

called a random experiment. So, literally the experiment that we run in heat transfer would be 



the example of a random experiment. So, I take so, for example the unsteady case that we 

looked at we make multiple temperatures and measurements in time.  

 

Now if I do the same experiment multiple times with the same condition. so, for example, the 

simple examples I have given here you take a coin it looks like I have kept it at the same place 

in your thumb and you are tossing it up Suddenly sometimes it results in head sometimes in 

tails. Now you might argue this is due to micro conditions or something like that but that apart 

from a macroscopic perspective it looks like we have set as similar situations as possible and 

we are getting different results throwing of a dice rainfall amount or thermocouple 

measurement. 

 

So, I keep the same slab and I put a thermocouple at a particular point. This is not going to give 

you the same measurement each time you would have done this in school use the Vermeer to 

measure the diameter of a marble something of that sort and measure it multiple times each 

time you get slightly different results. Such an experiment which seems to result in slightly 

different answers each time or different answers each time is called a random experiment. So, 

please remember this term random experiment.  

 

Now the second important term is what is known as a sample space. So, this is basically the set 

of all possible outcomes of a random experiment. So, in some sense the experiment is sampling 

out of this entire space, a space has a whole bunch of taste, a whole bunch of possibilities, 

imagine this is a bag you are pulling stuff out. So, for example the tossing bag has a sample 

space which has a head or a tail and you are putting your hand in and picking out either head 

or a tail. 

 

The thermocouple bag is a continuous back. It has a whole bunch of possibilities but even here 

there will be a range. So, the temperature within a slab with some let us say 10 degrees on 150 

degrees on another end is not going to turn out to be 3000 degrees Celsius. It is not going to 

happen somewhere on Earth in a simple situation. Similarly on the sun you do not expect if the 

sample space will have high temperatures and it will not have only minus 20 degrees 

Centigrade.  

 

So, the sample space is where we pick out the possible outcomes of a random experiment, these 

could be discrete or these could be continuous. so, diameter of a manufactured price. So, how 



we choose the sample space depends on the purpose of the analysis. this is not particularly 

relevant here but let us say you are choosing a something like the diameter of a manufactured 

pipe you will say the sample space is the set of all positive integers or you could say that if you 

are only interested in finding out whether it is a low or medium or a high diameter type. 

 

You will choose the sample space as discrete. this is a continuous sample space and this is a 

discrete sample space or a satisfactory or unsatisfactory. Similarly for temperature you could 

say all positive values, in case we are measuring the temperature in Kelvin or we could say low 

temperature, medium temperature, high temperature or too cool or too hot or satisfactory 

thermal conditions or unsatisfactory thermal conditions in case you are doing some HVAC 

design. 
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Now let us come to what constitutes the main thing in the sample space and this is what we are 

interested in these are random variables. within inverse heat translation generally in 

engineering and science we deal with numbers. So, random variable is instead of saying heads 

or tails we would actually want to denote outcomes with an actual number. For example, if it 

is heads or tails that is what is categorical outcome means two categories, we can call it zero 

or one. 

 

The variable that Associates a number with an outcome of a random experiment, so, I take a 

slab I make a measurement and the variable that is going to associate a number is temperature. 

So, the temperature is now a random variable. Now if I could also take a series of six 



temperatures and call it some capital T which is made up of T1 through T6, this is also a random 

variable, of course it is a six dimensional or six component random variable. 

 

This will seem like a simple idea but the notation often whenever you read inverse methods 

literature, it can get a little bit messy especially if you are not used to it. we are going to be a 

little bit casual about notation but at least once during the course I should mention it because if 

you do a more advanced course on inverse methods this will often become a bottleneck. So, 

one of the purposes of this course was to make a somewhat accessible introduction to inverse 

methods if you see textbooks, they often are very heavily filled with probability jargon and 

they make it less accessible.  

 

So, hopefully after you go through this course if you are actually entering any formal inverse 

methods course in heat transfer or in any other subject maybe a little bit more accessible. So, 

let me make this a little bit clearer. So, the random variable is typically denoted by a capital 

letter and its value is denoted by a small letter. So, I am going to take a simple example and 

then I will give you a heat transfer example also.  

 

So, for example I would say that the rainfall on a particular day is a random variable R. So, R 

is the name of the variable so remember just like in a code we have variables. So, if you use C 

you will say something like in or float or double R something of that sort you would say. And 

r itself will take values so, for example you will say r equal to 10. this I will denote by small r 

we may say that is already capital R, r is the set of all possible values of small r.  

 

So, that is what you should remember again but do not get too hung up on the notation, this is 

just. So, that in some of the slides I am going to show right. Now I will be a little bit particular 

about the rotation and you might get confused on what capital and small r our capital is the 

larger set. So, to think and small is the actual value it takes. So, for example if I ask what is the 

probability that the rainfall is greater than 10 mm, I will denote it by this notation 𝑃(𝑅 ≥ 10) =

?. 

 

So, for example I could also ask what is the probability that the temperature at this point lies 

between 30 degrees and 50 degrees. So, let us say this is point one I would give something of 

this sign I could also say probability that the temperature is equal to this is actually wrong 

because you cannot get a specific temperature but temperature equal to let us say small t is 



something. We will come to this a little bit more carefully when we come to probability density 

functions.  

 

So, I hope the idea itself is clear Capital denotes the set of variables and small denotes the 

actual value that variable takes. 
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Now here is probably the most important idea that you should get at a conceptual at a gut level 

when we deal with inverse problems, that is the idea of probability distributions. Now the 

important idea here is that probability distributions tell us how likely a random variable is to 

take each of its possible states. Now this might seem way but let me explain why this is 

important usually we talk about probabilities of events. 

 

Individual probabilities are for events or outcomes from sample space on the other hand the 

probability distribution is for the entire sample space, how is it different? I might ask what is 

the probability of a head and you might say it is 0.4 let us say it is a biased coin and you might 

say it is 0.4 that tells me something but, in this case, because there are only two outcomes, I 

will immediately know that the probability of tails is 0.6.  

 

So, when I talk about probability distribution, I am talking about the entire sample space. So, 

imagine there is a sample space all the possible events are here and all of them sum up to one, 

right all possible events sum up to one, what probability distribution tells you is how is 

probability distributed within the sample space. Now so, remember probability distribution 



corresponds to sample space whereas probability corresponds to one event or a few events 

whatever you are interested in. 

 

Why is this important? this is probably in my opinion the most central important idea as far as 

inverse methods are concerned, the idea of a distribution. Because it is not just enough for me 

in an inverse case to tell you, heat transfer is 1500 what is per meter Square. If I ask you how 

sure are you then it actually makes sense for you to give the entire distribution. why is that? 

So, you want to know not only what the possible heat transfer is or what the most likely heat 

transfers you also want to know the entire range. 

 

Let us say the likelihood of lying between 1500 and 1510 is something like 10 percent but there 

is actually a chance that you might hit 1700 watt per meter Square. you want to know what the 

chance is? Is it 10 percent? is it five percent? is it less than one in a million because when you 

design equipment you want to know not only one or you want to know the maximum 

temperature you will say what is the maximum temperature within the slab you might say 70 

degrees Centigrade but maybe the there is a small chance that it might hit 90 and it might conch 

off. 

 

Usually when design goes wrong it goes wrong because we did not take care of the distribution 

and we looked only at the averages. So, here is where the idea of a probability distribution 

becomes very powerful. You do not look at only one specific event you look at all events in 

the sample space and you tell them or you tell the person who is interested in finding out 

something about the system the entire distribution.  

 

So, remember this word distribution people will keep on talking about it whether you come to 

inverse or whether you come to machine learning especially people will keep on. So, what is 

the distribution, what is the distribution people want to know not only the specific event that 

you are interested in it but all the possibilities of all the events. So, usually when we report we 

report the mean what was your average score. 

 

So, just imagine you are going to a college for admission and you tell them that my entire GPA 

or my percentage was 85 percent, but they want specific courses they want to see what your 

full marksheet your full grade sheet. And if you go within further detail how much did you 

score in each exam within each grade. So, probably distribution has the entire information. So, 



if you want to quantify the uncertainty of any event or any sort of experiment all the 

uncertainties the distribution has the entire information about it.  

 

So, rather than asking for specific probabilities you ask for the entire information if it is 

available. So, sometimes it is not available and we will see how to reconstruct it next week that 

is our primary task as far as next week is concerned. But remember this if nothing else from 

this week please do ingrain this within your ideas that probability distribution is very important. 

Now once you understand the idea of probability distribution you can immediately see that 

there are two possible ways in which this distribution could be done. 

 

One is it is discrete that is the sample space has discrete separate points. So, for example this 

could be finite or it could be countably infinite I will explain what countably infinite is. So, it 

is not particularly relevant. Finite is a number of typographical errors in a page for example 

how many errors I might have made some spelling errors grammar errors within this page how 

many are those how many errors did a doctor make? 

 

How many times did it rain last month all these are discrete random variables all of you 

understand what discrete is? What I mean by countably infinite is, how many stars are there in 

the universe it could still appear like a random variable because we do not quite know the 

number but it could be really large there is more specific limit to it but nonetheless it is discrete 

it is not 3.1.  

 

So, there is continuous random variables is where the sample space is like temperature. it has 

a real number interval. So, for example if I want the heat transfer or if I want the temperature, 

I want the heat flux, I want to pressure all these are continuous random variables you could say 

temperature will vary somewhere between 10 to 30 degrees Centigrade, but it will vary 

continuously for example within Chennai it will vary somewhere between in very rare 

occasions like seven degrees centigrade to let us say 48 to 50 it will not go above 55 it will not 

drop below 7.  

 

So, that could be a range but nonetheless it is a continuous image. So, in the case of a discrete 

random variable, you will measure probability distribution really as what is known as a 

probability Mass function, whereas in the case of a continuous random variable you will 

measure a probability by a probability density function. Now we will not consider this too 



much though I will introduce you to this in the next slide just for completion's sake but this 

thing PDF.  

 

So, PDF is not our document PDF is a probability density function, it is a central idea I cannot 

tell you how important it is it is a central idea within inverse methods as well as machine 

learning’s and in machine learning as well as in general probability Theory because most of 

the time especially for our applications we tend to deal with continuous variables. So, and 

usually for some reason all of us find it a little bit confusing.  

 

So, we will deal with this and you will see some deal of this confusion when we come to next 

week also, but hopefully we would have done enough background this week that will be clear 

when we come to this next week. So, discrete random variable versus continuous random 

variable and if nothing else remember this continuous random variable and probability density 

function. 
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So, let us quickly come to the probability Mass function, which is a little bit more intuitive and 

then we will just use this intuition to figure out what a probability density function is. So, 

probability Mass function is just the list of all possible values along with their probability. So, 

this is a simple idea. As I told you, you take the sample space the sample space has a few events 

in this case let us say we are throwing up a dice which has been manipulated and not all sides 

are equally likely. 

 



And you just list all their probabilities this should have been probability of x equal to 2. So, it 

throws up either a one two three four five six and the probabilities are written here. So, to be a 

probability Mass function for a random variable x, you need to satisfy a few things, of course 

remember the entire sample space has to be written down. And each individual probabilities 

for example if it reaches 1, 2, 3, 4, 5, 6, all of these probabilities have to be less than one that 

is kind of obvious. 

 

And the summation of all those possible probabilities should be exactly one. So, which is the 

case here 0.6 plus 0.8 Plus 0.1 plus 0.1 this is ∑ 𝑃(𝑋 = 𝑥𝑖), this is the simple idea of a 

probability Mass function you could also draw it like this. So, for example x equal to 1, 2, 3, 4, 

5, 6 and it will look like this it will look like a point load 0.1, .1, .2, .2, 2, .2. So, this is the 

diagram of a probability Mass function notice it cannot take any value between one and 2, 2 

and 3, 3 and 4 this is where it differs from the idea of a probability density function. 
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So, the probability density function is what we will see next but as I mentioned here our 

probability Mass function is like a point source. So, you could think of if you have done solid 

mechanics, you would have something like a point load or within something like heat transfer 

you could just have q at a single point all these are idealizations but it works in a very similar 

way in that we simply sum up these things one by one and find out the net probability.  

 

Now when we come to probability distributions as I said the more important or the more 

practical quantity for inverse methods in heat transfer is this idea of a probability density 

function. So, this probability density function can work in multiple dimensions which will 



come to actually next week not really this week. But let us just assume this is in 1D, this is 

somewhat like probability per unit length, unit length of what, unit length of the sample space.  

 

So, like I said this is like a distributed source of probability it is useful for you to imagine that 

there is the space and a whole bunch of infinite events are happening continuous infinite units. 

So, for example this could be a space with temperature and pressure or you could have two 

thermocouples, this could be simply a sampling between T1 and T2, XY coordinates would 

mean T1 and T2 and each one of these points is a possible value of T1 versus a possible value 

of T2. So, in that case we are giving something like 𝑃(𝑇1, 𝑇2) . 

 

Now there is a small problem here which is what we try to address through this probability 

density function rather than a probability Mass function. So, the problem is this; the problem 

is let us just take a 1D case. So, let us say there is some I have given the example of rainfall 

but let us take the example of temperature. let us say temperature varies between 10 and 20. 

And we have to give a probability for each event, remember we are trying to distribute this 

entire probability which sums up to one between these values.  

 

Now there are infinite points here right. So, obviously each of them regardless of what you do 

each of them is likely. So, you will basically get zero when you divide 1 divided by Infinity 

you are going to get 0 as the likelihood of each point. So, you cannot ever say what is the 

likelihood of getting a temperature of 10.123456 etcetera. What however we can do is give 

probability for a range or we can give the density of probability. 

 

Just like if I want the mass of a point within a solid body, I cannot give it but I can give density 

of a solid point because that is mass per unit volume. Now you can think of probability density 

as a non-uniformly dense body, it starts here ends here and it tells you in each Place how dense 

how much more likely it is. So, I will show this via histogram later on but the reason why we 

define probability this way.  

 

Now notice 𝑃(𝑥)𝑑𝑥 is actually the unit probability what it means is instead of giving 

probability for a number we give probability for a range. as an example, let us take a finite 

range and then we will reduce it to infinitesimal range. So, for example I will take a finite range 

and say what is the probability that rainfall lies between 10 and 20 mm or I can say what is the 



probability the temperature lies between 10 and 20 degrees centigrade. Now for that you 

actually integrate in this entire area and you tell me the net probability.  

 

Now what do you integrate, what you integrate is the density of the probability. So, you say 

integral from 10 to 20 of 𝑃(𝑥)𝑑𝑥 where 𝑃(𝑥) is probability per unit temperature that might not 

make much sense but it is unit length in sample space as I have written here that we take. Now, 

what it means in finite terms is what 𝑃(𝑥) does is if you do multiply 𝑃(𝑥) by dx it tells you the 

probability that 𝑥 ≤ 𝑋 ≤ 𝑥 + 𝑑𝑥.  

 

So, notice this is the random variable these are the two values. So, for example P at 10 means 

what is the probability that the temperature lies between 10 and 10 plus some small dx or dt 

obviously this number will go down to 0 as dt goes down to 0 but dt, dx is a finite value what 

𝑃(𝑥)𝑑𝑥 is actually a finite value. So, what we do is we integrate between 10 to 20 not 𝑃(𝑥)dx, 

∫ 𝑃(𝑥)𝑑𝑥 between any two x is actually a finite value is using this. And using analogy with 

what we did for discrete values. 

 

We now write what a probability density function for a continuous variable is and the 

conditions it has to satisfy. So, the condition it has to satisfy is that the possible all possible 

states of x have to be included as I said here it is not necessary. So, this is where it differs from 

discrete cases 𝑃(𝑥) need not be less than equal to one, all we require is ∫ 𝑃(𝑥)𝑑𝑥  has to be 

equal to one. you can imagine a function where individual values individual densities are 

greater than one but it integrates actually to one.  

 

So, this is an important difference from before. So, for example we could think of a simple case 

something like this, let us say x is a variable capital x is a variable that varies between 0 and 1 

by 6. So, x is a sample space such that 0 is less than x less than 1 by 6. and I have 𝑃(𝑥) is 

simply 6. So, you can notice this density is greater than one, but when I integrate 𝑃(𝑥)dx 

between 0 and the entire sample space domain you are still going to get 1, 6 times 1 by 6 you 

are going to get two.  

 

So, it is entirely possible for the probability density since it is a density it can always be greater 

than one all it means is it is really dense it is a relative quantity, what 𝑃(𝑥) talks about is how 

much more likely is it for me to find the random variable here in this space rather than 



somewhere else that is all it really means. So, you should not give Direct Value to 𝑃(𝑥) you 

can only comparatively look at 𝑃(𝑥) versus somewhere else. So, if it is higher at that place, it 

is more likely for you to find the random variable. this is used very powerfully with an quantum 

mechanics and you will see this later on also we will talk about this a little bit more when we 

come to the direct inverse problems in the next week.  

 

Now a simple idea with which you can build this intuition is to make a histogram. So, for 

example when I say that temperature lies between 10 and 20 and temperature is a random 

variable um the way we would actually make measurements is we cannot measure all the 

infinite temperatures we will first say let me just count the number of times let us say I am 

taking a thermocouple and at a particular point I am measuring the temperature and I can.  

 

Now count the number of times that the temperature light lay between 10 and 10.1. So, maybe 

it was five times then 10.1 and 10.2 maybe it was six times etcetera etc. then I went till 19.9 to 

20 and this was let us say 15 times and now I take the total number of events, let us say this 

was 150 and find out the fraction 5 by 150, 6 by 150, 15 by 150 and then draw a histogram this 

is what is known as a normalized histogram.  

 

So, that all of it, all of the fractions add up to one. Now of course you I could reduce this range 

further instead of making it point on I could make it 0.05 then I will make it a little bit thinner 

but it will look a little bit more continuous. And as I keep on continuing this process, this starts 

looking like a smooth curve. Now that is what a probability density function is. it is sort of the 

limit of taking infinitesimal widths and infinite measurements and that is what looks like a 

histogram. 
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So, for example something of this sort, so, here the width is let us say something like 0.2, I 

think I took it some variable that changes from minus infinity to plus infinity you can hardly 

see anything here. But it starts looking like you can imagine that the infinite limit of this 

histogram is what is the probability density function. So, please try to we will use the idea of 

probability density function in the next week especially powerfully, but please try to get it into 

your concepts. 

 

That ultimately you want this gap which was point to here to go to dx as small as possible and 

in that case this height here would represent 𝑃(𝑥) and integral of here, I said it is treated as a 

discrete variable then 𝑃(𝑥), Sigma of 𝑃(𝑥) into Delta x would be 1 but ideally you want integral 

of 𝑃(𝑥)dx is equal to 1. so, we will move on to other ideas from probability in the next video 

and see in the next video, thank you. 

 

 


