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In the last video we saw that linear methods suffer from overfitting; in case you use two complex 

a model and this overfitting actually is a sign of ill posedness of the problem. And the solution to 

ill posedness is actually something called regularization. And the way we added or the way we 

accomplished this regularization was by adding terms to the objective function. These terms 

penalize high coefficients or high parameters. 

 

So, for example we saw that our usual loss function now becomes J is a composite loss function 

which is, 
1

2𝑚
 ∑ (𝑦𝑖 − 𝑦�̂�)

2𝑚
𝑖=1 . This is the original plus this additional penalty term plus the penalty 

term which is. 
1

2
𝜆 ∑ 𝑤𝑖

2𝑚
𝑖=1  with the summation which we also call ‖𝑤‖this is the penalty term; 

this is also known as the regularization term. 
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As I showed, as I told you this term is variously called Tikhonov regularization, also called L2 

regularization also, called Ridge regression when applied to linear problems. Now Tikhonov 

regularization is a little bit, general than this but I am not going to get into that immediately. But 

let me show you so now because the loss function is different, this should have been different 

normal equation. 
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So, recall that when we started with the pure loss function J is, 

𝐽 =
1

2
 ∑(𝑦𝑖 − 𝑦�̂�)

2

𝑚

𝑖=1

  



So, this led to, 

𝑋𝑇𝑋𝑊 = 𝑋𝑇𝑌 

This is without regularization. Now within one of the earlier exercises I had asked you, but this 

question was kind of sitting there earlier what happens to the case with regularization with the 

extra term. So, now our new J is, 

𝐽 =  𝐽𝑜𝑙𝑑 + 
𝜆

2
𝑊𝑇𝑊 

 

Why? because if w is, 

𝑊 = [𝑤0 𝑤1 . . 𝑤𝑛] 

 and WT is, 

𝑊𝑇 = 

[
 
 
 
 
𝑤0

𝑤1

.

.
𝑤𝑛]

 
 
 
 

 

and as we saw in the earlier video WT, we will simply give you sigma of or 𝑤0
2 + 𝑤1

2 + ⋯+

𝑤𝑛
2. 
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Now remember how we calculated the normal equations; the normal equations were obtained by 

setting 
𝜕𝐽

𝜕𝑊
= 0. Now the new 

𝜕𝐽

𝜕𝑊
 is going to be, 



𝜕𝐽

𝜕𝑊
= 

𝜕𝐽𝑜𝑙𝑑

𝜕𝑊
+

𝜕

𝜕𝑊
[
𝜆

2
𝑊𝑇𝑊] 
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Now this you might recollect from your old video. otherwise, I would recommend that you look 

back at it this gives us 𝑋𝑇𝑋𝑊 − 𝑋𝑇𝑌, that is what this term was. This extra thing is the same as 

you look at this matrix (𝑊𝑇𝐼𝑊) and we had differentiated (𝑊𝑇𝐴𝑊) before. So, this is a scalar 

and it is a constant we can take that out 
𝜆

2
 if you go back to our previous videos this will be (𝐼 +

𝐼𝑇)𝑊, (𝐼 + 𝐼𝑇) of course since it is an identity matrix it is simply I. 

 

So, this gives us 
𝜕𝐽

𝜕𝑊
 is, 

(𝑋𝑇𝑋 + 𝜆𝐼)𝑊 − 𝑋𝑇𝑌 = 0 

So, this tells us that, 

(𝑋𝑇𝑋 + 𝜆𝐼)𝑊 = 𝑋𝑇𝑌 

This is the normalized normal equations for the regularized Least square equations. So, you can 

use this to generate the results that I showed you in the previous case all you need to do is put W 

going from 1 to 9 in case you have a ninth-order polynomial and simply put change lambda values. 

 

You see this is not very different this becomes 𝑋𝑇𝑋𝑊 = 𝑋𝑇𝑌, when 𝜆 = 0. So, the case when 𝜆 = 

0 recovers the original normal equations also. So, this we can call again the same name that I gave 



you I am going to call this Tikhonov regularized normal equations. But this is for a linear system 

what happens for a non-linear system. Let us look at that next. 
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So, when we want to find out how the same idea can be used to regularize, let us say non-linear 

equations, we apply the same trick. We say that J is once again, 

𝐽 =
1

2
 ∑(𝑦𝑖 − 𝑦�̂�)

2 +
1

2
𝜆 ∑𝑊𝑖

2  

Let us call it, because this summation is over data. And this summation is over features or the 

number of degrees of polynomials. Now we need the equivalent of Gauss Newton. now remember 

Gauss Newton worked on delta W it worked on ΔW. 

 

And whenever we had when the linear equation was 𝑋𝑇𝑋𝑊 = 𝑋𝑇𝑌, the corresponding Gauss 

Newton was 𝑍𝑇𝑍Δ𝑊 = 𝑍𝑇Δ𝑌, which basically was D, we can call this Δ𝑌 basically (𝑌 − �̂�). Now 

you can rederive the whole thing in this case with this additional term but I am just going to appeal 

to intuition just in order to save time. 

 

So, similarly for Tikhonov when you have (𝑋𝑇𝑋 + 𝜆𝐼)𝑊 = 𝑋𝑇𝑌. You can derive this in exactly 

the same way that we derived Gauss Newton I will save your time by not doing that. You can 

simply write some of you can see this intuitively, 

(𝑍𝑇𝑍 + 𝜆𝐼)Δ𝑊 = 𝑍𝑇𝐷 

So, the only change really speaking this is the additional Tikhonov term. 
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And what this does again I will not be able to show it easily in practice, this is easy to see in the 

linear case when we ordered more and more terms. But this basically stabilizes I will show you an 

example. But it will not be a very clear example I will show you an example in the next video for 

the non-linear risk. But this stabilizes Gauss Newton. so typically, if you try Gauss Newton for 

some problem let us say and it diverges it is a good idea to add the Tikhonov term. 

 

Because it will damp it as you can see as you could have seen it seen in the linear case also. So, 

Tikhonov will damp. so, this is sort of a damping term, damps oscillations or poor convergence. 

So, this has typically slower but stabler convergence. So, sometimes when Gauss Newton diverges 

Tikhonov will actually slowly converge it will converge it will be slower. In many cases when 

Gauss Newton does converge as I will show you in the next video.  

 

In many cases when Gauss Newton converges taken off convert this a little bit slower but it is sort 

of the typical slow but steady. So, in case you get bad answers it is a good idea to put Tikhonov 

regularization there and that will give you slightly better answers. 
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But that is not all, there is a slightly better version of this called Levenberg Marquardt. Now the 

way Levenberg Marquardt was originally derived at least in at least one direction. It was not 

through Tikhonov but through an entirely different argument and I will show you that argument 

also now. But first let us see Levenberg Marquardt as if it is just a variation of Tikhonov. So, let 

us look at this equation, so let me take an example. 

 

Let us take X is a data set and it is 6 cross 3, for example you could have 1, 1, 1, 1, 1, 1 and there 

are two features 𝑋1, 𝑋2. So, for example a quadratic model would be a decent example of this W 

is let us say 𝑤0, 𝑤1, 𝑤2. So, this is 3 cross 1 now Y has to have the same number of data points but 

it is only one output, so Y is  𝑦1, 𝑦2, … 𝑦6, so this is a 6 cross 1. In case this is the case, then if I 

look at Tikhonov regularization 𝑋𝑇𝑋 or let us look at Gauss Newton itself (𝑍𝑇𝑍 + 𝜆𝐼)Δ𝑊 = 𝑍𝑇𝐷. 

 

Now Z is going to have the same size as X, as you might remember 
𝜕�̂�

𝜕𝑤
 . So, Z is going to be 6 

cross 3, Z transpose is going to be 3 cross 6, so this matrix is going to be 3 cross 3 matrix. Lambda 

I simply mean lambda, lambda, lambda so you are going to have a 3 cross 3 matrix here. And the 

diagonal terms alone will be modified and each of them will go to this plus lambda the same two 

terms same term this plus lambda then same 2 terms this plus lambda. So, that is what it goes to 

because of the addition of this lambda. 
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Now the question you can ask in Levenberg Marquardt is why not have these three lambdas as 

different lambda 1, lambda 2, lambda 3. So, the way Levenberg Marquardt works is I will show 

you a different justification shortly, but let us look at the first justifications. Levenberg Marquardt 

is, I do not want this modification term to just have constant terms, I am going to have slightly 

different terms now, instead of this will be trouble. 

 

Because now you have to play with 3 hyper parameters, I have to decide on lambda 1, I have to 

decide on lambda 2, I have to decide on lambda 3 over time what they found out was. Let us say 

if Z transpose Z is let us call this something, I will call this P, so let us just say this is, 

[

𝑝11 𝑝12 𝑝13

𝑝21 𝑝22 𝑝23

𝑝21 𝑝32 𝑝33

] 

and you want to add the modification term the lambda term. So, a good idea seems to be multiplied 

by a lambda but multiply only on the diagonal terms that is still true. 

 

So, these terms are still 0 you are not adding anything here. But instead of adding 1 here which 

was taken off you add 𝑝11, 𝑝22, 𝑝33. So, there are numerical reasons for this so basically if it was 

this before it goes to, 

[

𝑝11 + 𝜆𝑝11 𝑝12 𝑝13

𝑝21 𝑝22 + 𝜆𝑝22 𝑝23

𝑝21 𝑝32 𝑝33 + 𝜆𝑝33

] 

 



This is the Levenberg Marquardt algorithm. So, the idea is simple you see again that in effect what 

you have done is you have added 3 different terms earlier you were only adding lambda. 

 

Now lambda is scaled according to what the original term was that is the only idea it can be seen 

basically as a modification of the Tikhonov algorithm. 
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So, you can write a Levenberg Marquardt as, 

[𝑍𝑇𝑍 + 𝜆 𝑑𝑖𝑎𝑔(𝑍𝑇𝑍)]Δ𝑊 = 𝑍𝑇𝐷 

 𝑍𝑇𝑍 + 𝜆 𝑑𝑖𝑎𝑔(𝑍𝑇𝑍). So, only the diagonal terms get added that is this term. This is basically 

diagonal of Z transpose Z multiplying delta W = Z transpose times delta Y which we called D. So, 

compare this with Tikhonov which is, 

[𝑍𝑇𝑍 + 𝜆 𝐼]Δ𝑊 =  𝑍𝑇𝐷 

 

So, Levenberg Marquardt is less stable than Tikhonov but faster. so, this is the standard algorithm 

for non-linear inverse problems. So, for non-linear regression this is the standard algorithm and it 

works pretty well. 
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Now I want to give you alternate interpretation as I said there are multiple interpretations of both 

these algorithms. So, the alternate interpretation of the LM algorithm it is like this, so suppose I 

again looked at this Z transpose Z + lambda times diagonal or actually let me give an alternate 

interpretation of the Tikhonov version itself, Tikhonov algorithm because it is a little bit easier to 

see there. 

 

So,  

[𝑍𝑇𝑍 + 𝜆 𝐼]Δ𝑊 = 𝑍𝑇(𝑌 − �̂�) 

lambda times I times delta W = 𝑍𝑇𝐷 and instead of calling it 𝑍𝑇𝐷, I am going to call it 𝑍𝑇(𝑌 − �̂�), 

where you have. Now what happens when lambda is very high, so imagine lambda is very high 

then this becomes, 

𝜆𝐼Δ𝑊 = 𝑍𝑇(𝑌 − �̂�) 

 which means Δ𝑊, 

Δ𝑊 = 
1

𝜆
 𝑍𝑇(𝑌 − �̂�) 
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Now let us call this something let us call 1 by lambda as 𝛽 the Z transpose times this, we know is 

negative of 
𝜕𝐽

𝜕�̂�
, this we know is 

𝜕�̂�

𝜕𝑤
. So, basically you get Δ𝑊 𝑎𝑠,  

Δ𝑊 = −𝛽
𝜕𝐽

𝜕�̂�

𝜕�̂�

𝜕𝑤
 

I can show it in a matrix term but I am kind of running through this a little bit faster than you might 

be comfortable with. Because I am just trying to show a particular point rather than do some 

mathematical derivation. 

 

So, this basically says so, all these matrices you have to be a little bit careful about transposes 

etcetera I am not being careful this is not a formal derivation. But I want you to see this 
𝜕𝐽

𝜕�̂�

𝜕�̂�

𝜕𝑤
 is 

the same as say 
𝜕𝐽

𝜕𝑤
. So, this is gradient descent, so notice remember that delta w for gradient 

descent was minus alpha times 
𝜕𝐽

𝜕𝑤
. So, all we have is gradient descent with alpha = 1 by lambda. 

 

Now what does this mean when lambda is very high, alpha is very low. So, it is exactly 

corresponding to that so if I keep the regularization parameter or what looks like the regularization 

parameter as very high. What Tikhonov regularization does is? It does just do gradient descent 

many people call this version of Tikhonov also a Sullivan but not what it is just not quite accurate. 

But that is I mean different names are sitting in the literature. 

 



So, this at high alpha or high lambda Levenberg Marquardt or Tikhonov is equal to gradient 

descent. 
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Now what happens at lower lambda? At low lambda this becomes 𝑍𝑇𝑍∆𝑊 = 𝑍𝑇𝐷, which is Gauss 

Newton. So, another interpretation of Tikhonov is a blending of Gauss Newton with gradient 

descent using lambda. So, high lambda gives me gradient descent, low lambda gives me Gauss 

Newton algorithm and this is a nice way of seeing a Tikhonov. So, this puts us right in between. 

 

Now what happens when you use gradient descent is, it is less accurate but better behaved this is 

more accurate, but less stable. Now what you want to do ultimately something else so we usually 

have something called a lambda schedule, that is change lambda as iterations go on. 
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So, initially we used high lambda this is called a schedule and later on use low lambda. We are not 

going to do any such thing typically what will happen is you will start with let us say lambda = 1 

then after a few iterations you make it 0.5, 0.25 so on and so forth and as it comes closer and closer 

to the actual answer you get closer and closer to gross Newton which will converge very fast. 

 

Initially you want to explore a lot of the parameter space and as you come later on you come to 

better and better accuracy as you come to the parameters. So, what we saw within this video were 

these two variants of regularization, Tikhonov as well as Levenberg Marquardt. In the next video 

we will look at a simple coding example with the same case that we did for Gauss Newton unsteady 

convection plus heat generation case which was a non-linear case. 

 

And we will see how you can write the program for this you will see that the variations are actually 

quite small and I have a few comments about performance of these algorithms also in the next 

video. So, see you in the next video. Thank you. 


